All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Deep-Learning Approach to Topographical Image Analysis

Public support

  • Provider

    Ministry of Education, Youth and Sports

  • Programme

    INTER-EXCELLENCE

  • Call for proposals

    INTER-EXCELLENCE 21 (SMSM2019LTAIZ)

  • Main participants

    Vysoké učení technické v Brně / Fakulta informačních technologií

  • Contest type

    VS - Public tender

  • Contract ID

    MSMT-22782/2019-2

Alternative language

  • Project name in Czech

    Topografická analýza obrazu s využitím metod hlubokého učení

  • Annotation in Czech

    Cílem projektu je výzkum zcela nových přístupů na bázi hlubokého učení (angl. deep learning, DL) k fúzi multimodálních zdrojů dat, které jsou vhodné pro vizuální geo-lokalizaci. Jedná se zejména o fotografie/videa pořízené běžnou kamerou nebo mobilním zařízením, 3D digitální modely terénu, syntetické (renderované) obrazy, příp. informace o hloubce.

Scientific branches

  • R&D category

    ZV - Basic research

  • OECD FORD - main branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

  • OECD FORD - secondary branch

  • OECD FORD - another secondary branch

  • CEP - equivalent branches <br>(according to the <a href="http://www.vyzkum.cz/storage/att/E6EF7938F0E854BAE520AC119FB22E8D/Prevodnik_oboru_Frascati.pdf">converter</a>)

    AF - Documentation, librarianship, work with information<br>BC - Theory and management systems<br>BD - Information theory<br>IN - Informatics

Completed project evaluation

  • Provider evaluation

    V - Vynikající výsledky projektu (s mezinárodním významem atd.)

  • Project results evaluation

    "The project Deep-Learning Approach to Topographical Image Analysis focused on research of novel methods of visual camera localization based on multimodal data registration using current machine learning approaches. In the second half of the project (2021-22), we concentrated on methods for camera pose estimation in the natural environments. A new localization method Crosslocate was presented at the WACV22 conference, and an efficient method for horizon curve detection was introduced at the IJCNN21 conference. Research on the perception of 3D terrain models and other synthetically generated data also continued. Two new perceptual metrics for estimating the realism of 3D terrain, and tree models (ICTree) have been proposed and published in ACM TAP and at SIGGRAPH Asia 21, respectively. Two research datasets of terrain and botanical tree models with perceptual user scores obtained in large-scale user experiments were published as well.

Solution timeline

  • Realization period - beginning

    Jul 1, 2019

  • Realization period - end

    Jun 30, 2022

  • Project status

    U - Finished project

  • Latest support payment

    Feb 24, 2022

Data delivery to CEP

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

  • Data delivery code

    CEP23-MSM-LT-U

  • Data delivery date

    Jun 30, 2023

Finance

  • Total approved costs

    4,478 thou. CZK

  • Public financial support

    3,828 thou. CZK

  • Other public sources

    0 thou. CZK

  • Non public and foreign sources

    0 thou. CZK