Deep-Learning Approach to Topographical Image Analysis
Public support
Provider
Ministry of Education, Youth and Sports
Programme
INTER-EXCELLENCE
Call for proposals
INTER-EXCELLENCE 21 (SMSM2019LTAIZ)
Main participants
Vysoké učení technické v Brně / Fakulta informačních technologií
Contest type
VS - Public tender
Contract ID
MSMT-22782/2019-2
Alternative language
Project name in Czech
Topografická analýza obrazu s využitím metod hlubokého učení
Annotation in Czech
Cílem projektu je výzkum zcela nových přístupů na bázi hlubokého učení (angl. deep learning, DL) k fúzi multimodálních zdrojů dat, které jsou vhodné pro vizuální geo-lokalizaci. Jedná se zejména o fotografie/videa pořízené běžnou kamerou nebo mobilním zařízením, 3D digitální modely terénu, syntetické (renderované) obrazy, příp. informace o hloubce.
Scientific branches
R&D category
ZV - Basic research
OECD FORD - main branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
OECD FORD - secondary branch
—
OECD FORD - another secondary branch
—
CEP - equivalent branches <br>(according to the <a href="http://www.vyzkum.cz/storage/att/E6EF7938F0E854BAE520AC119FB22E8D/Prevodnik_oboru_Frascati.pdf">converter</a>)
AF - Documentation, librarianship, work with information<br>BC - Theory and management systems<br>BD - Information theory<br>IN - Informatics
Completed project evaluation
Provider evaluation
V - Vynikající výsledky projektu (s mezinárodním významem atd.)
Project results evaluation
"The project Deep-Learning Approach to Topographical Image Analysis focused on research of novel methods of visual camera localization based on multimodal data registration using current machine learning approaches. In the second half of the project (2021-22), we concentrated on methods for camera pose estimation in the natural environments. A new localization method Crosslocate was presented at the WACV22 conference, and an efficient method for horizon curve detection was introduced at the IJCNN21 conference. Research on the perception of 3D terrain models and other synthetically generated data also continued. Two new perceptual metrics for estimating the realism of 3D terrain, and tree models (ICTree) have been proposed and published in ACM TAP and at SIGGRAPH Asia 21, respectively. Two research datasets of terrain and botanical tree models with perceptual user scores obtained in large-scale user experiments were published as well.
Solution timeline
Realization period - beginning
Jul 1, 2019
Realization period - end
Jun 30, 2022
Project status
U - Finished project
Latest support payment
Feb 24, 2022
Data delivery to CEP
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data delivery code
CEP23-MSM-LT-U
Data delivery date
Jun 30, 2023
Finance
Total approved costs
4,478 thou. CZK
Public financial support
3,828 thou. CZK
Other public sources
0 thou. CZK
Non public and foreign sources
0 thou. CZK