All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”
ME10047

Predictive Data Modeling for Effective Gene Therapy and Bone Marrow Transplantation

Public support

  • Provider

    Ministry of Education, Youth and Sports

  • Programme

    KONTAKT

  • Call for proposals

    KONTAKT 8 (SMSM2010ME5)

  • Main participants

  • Contest type

    VS - Public tender

  • Contract ID

    2062/2011-320

Alternative language

  • Project name in Czech

    Prediktivní datové modelování pro efektivní genovou terapii a transplantaci kostní dřeně

  • Annotation in Czech

    Cílem projektu je vytvořit a otestovat statistické, relačně-logické a kombinované formální klasifikační modely pro predikci interakce proteinů (zejm. zinkově-prstových) s DNA a tím umožnit zvýšení úspěšnosti genové terapie a transplantace kostní dřeně.

Scientific branches

  • R&D category

    ZV - Basic research

  • CEP classification - main branch

    IN - Informatics

  • CEP - secondary branch

    CE - Biochemistry

  • CEP - another secondary branch

    JC - Computer hardware and software

  • OECD FORD - equivalent branches <br>(according to the <a href="http://www.vyzkum.cz/storage/att/E6EF7938F0E854BAE520AC119FB22E8D/Prevodnik_oboru_Frascati.pdf">converter</a>)

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)<br>10608 - Biochemistry and molecular biology<br>10609 - Biochemical research methods<br>20206 - Computer hardware and architecture

Completed project evaluation

  • Provider evaluation

    V - Vynikající výsledky projektu (s mezinárodním významem atd.)

  • Project results evaluation

    We devised novel algorithms that learn to predict interactions of proteins and DNA. The algorithms based on hybrid strategies of relational machine learning accept structural descriptions of the proteins as inputs and predict if and where the interactionwith DNA occurs. In the experiments we achieved predictive accuracies higher than the state of the art classifiers using structural information.

Solution timeline

  • Realization period - beginning

    May 1, 2010

  • Realization period - end

    Dec 31, 2012

  • Project status

    U - Finished project

  • Latest support payment

    Feb 16, 2012

Data delivery to CEP

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

  • Data delivery code

    CEP13-MSM-ME-U/01:1

  • Data delivery date

    Jun 28, 2013

Finance

  • Total approved costs

    1,334 thou. CZK

  • Public financial support

    1,334 thou. CZK

  • Other public sources

    0 thou. CZK

  • Non public and foreign sources

    0 thou. CZK