Reconstruction and analysis of erythemal UV radiation time series from Hradec Králové (Czech Republic) over the past 50 years
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00020699%3A_____%2F18%3AN0000061" target="_blank" >RIV/00020699:_____/18:N0000061 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/18:00102410
Result on the web
<a href="https://www.atmos-chem-phys.net/18/1805/2018/" target="_blank" >https://www.atmos-chem-phys.net/18/1805/2018/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5194/acp-18-1805-2018" target="_blank" >10.5194/acp-18-1805-2018</a>
Alternative languages
Result language
angličtina
Original language name
Reconstruction and analysis of erythemal UV radiation time series from Hradec Králové (Czech Republic) over the past 50 years
Original language description
This paper evaluates the variability of erythemal ultraviolet (EUV) radiation from Hradec Králové (Czech Republic) in the period 1964–2013. The EUV radiation time series was reconstructed using a radiative transfer model and additional empirical relationships, with the final root mean square error of 9.9 %. The reconstructed time series documented the increase in EUV radiation doses in the 1980s and the 1990s (up to 15% per decade), which was linked to the steep decline in total ozone (10% per decade). The changes in cloud cover were the major factor affecting the EUV radiation doses especially in the 1960s, 1970s, and at the beginning of the new millennium. The mean annual EUV radiation doses in the decade 2004–2013 declined by 5 %. The factors affecting the EUV radiation doses differed also according to the chosen integration period (daily, monthly, and annually): solar zenith angle was the most important for daily doses, cloud cover, and surface UV albedo for their monthly means, and the annual means of EUV radiation doses were most influenced by total ozone column. The number of days with very high EUV radiation doses increased by 22% per decade, the increase was statistically significant in all seasons except autumn. The occurrence of the days with very high EUV doses was influenced mostly by low total ozone column (82% of days), clear-sky or partly cloudy conditions (74% of days) and by increased surface albedo (19% of days). The principal component analysis documented that the occurrence of days with very high EUV radiation doses was much affected by the positive phase of North Atlantic Oscillation with an Azores High promontory reaching over central Europe. In the stratosphere, a strong Arctic circumpolar vortex and the meridional inflow of ozone-poor air from the southwest were favorable for the occurrence of days with very high EUV radiation doses. This is the first analysis of the relationship between the high EUV radiation doses and macroscale circulation patterns, and therefore more attention should be given also to other dynamical variables that may affect the solar UV radiation on the Earth surface.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10509 - Meteorology and atmospheric sciences
Result continuities
Project
<a href="/en/project/LM2015078" target="_blank" >LM2015078: Czech Polar Research Infrastructure</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Atmospheric Chemistry and Physics
ISSN
1680-7316
e-ISSN
—
Volume of the periodical
2018
Issue of the periodical within the volume
18
Country of publishing house
DE - GERMANY
Number of pages
14
Pages from-to
1805-1818
UT code for WoS article
000424327800003
EID of the result in the Scopus database
2-s2.0-85041688046