Fuzzy logic based flash flood forecast
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00020699%3A_____%2F19%3AN0000062" target="_blank" >RIV/00020699:_____/19:N0000062 - isvavai.cz</a>
Result on the web
<a href="https://uhmi.org.ua/conf/danube_conference_2019/papers_abstracts/Electronic_Book_Danube_Conference_2019_2.pdf" target="_blank" >https://uhmi.org.ua/conf/danube_conference_2019/papers_abstracts/Electronic_Book_Danube_Conference_2019_2.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Fuzzy logic based flash flood forecast
Original language description
The flash flood forecasting remains one of the most difficult tasks in the operative hydrology worldwide. The torrential rainfalls bring high uncertainty included in both forecasted and measured part of the input rainfall data. The hydrological models must be capable to deal with such amount of uncertainty. The artificial intelligence methods work on the principles of adaptability and could represent a proper solution. The application of different methods, approaches, hydrological models and usage of various input data is necessary. The tool for real-time evaluation of the flash flood occurrence was assembled on the bases of the fuzzy logic. The model covers whole area of the Czech Republic and the nearest surroundings. The domain is divided into 3245 small catchments of the average size of 30 km2. Real flood episodes were used for the calibration and future flood events can be used for recalibration (principle of adaptability). The model consists of two fuzzy inference systems (FIS). The catchment predisposition for the flash flood occurrence is evaluated by the first FIS. The geomorphological characteristics and long-term meteorological statistics serve as the inputs. The second FIS evaluates real-time data. The inputs are: The predisposition for flash flood occurrence (gained from the first FIS), the rainfall intensity, the rainfall duration and the antecedent precipitation index. The meteorological radar measurement and the precipitation nowcasting serve as the precipitation data source. Various precipitation nowcasting methods are considered. The risk of the flash flood occurrence is evaluated for each small catchment every 5 or 10 minutes (the time step depends on the precipitation nowcasting method). The Fuzzy Flash Flood model is implemented in the Czech Hydrometeorological Institute (CHMI) – Brno Regional Office. The results are available for all forecasters at CHMI via web application for testing. The huge uncertainty inherent in the flash flood forecasting causes that fuzzy model outputs based on different nowcasting methods could vary significantly. The storms development is very dynamic and hydrological forecast could change a lot of every 5 minutes. That is why the fuzzy model estimates are intended to be used by experts only. The Fuzzy Flash Flood model is an alternative tool for the flash flood forecasting. It can provide the first hints of danger of flash flood occurrence within the whole territory of the Czech Republic. Its main advantage is very fast calculation and possibility of variant approach using various precipitation nowcasting inputs. However, the system produces large number of false alarms, therefore the long-term testing in operation is necessary and the warning releasing rules must be set.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10501 - Hydrology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Electronic book with full papers from XXVIIІ Conference of the Danubian Countries on Hydrological Forecasting and Hydrological Bases of Water Management
ISBN
978-966-7067-37-3
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
86-91
Publisher name
Ukrainian Hydrometeorological Institute,
Place of publication
Kyiv
Event location
Kyjev
Event date
Nov 6, 2019
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—