All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Satellite observation of the dust trail of a major bolide event over the Bering Sea on December 18, 2018

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00020699%3A_____%2F20%3AN0000038" target="_blank" >RIV/00020699:_____/20:N0000038 - isvavai.cz</a>

  • Result on the web

    <a href="https://arxiv.org/pdf/2010.13597.pdf" target="_blank" >https://arxiv.org/pdf/2010.13597.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/0004-6361/202039393" target="_blank" >10.1051/0004-6361/202039393</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Satellite observation of the dust trail of a major bolide event over the Bering Sea on December 18, 2018

  • Original language description

    Context. One of the most energetic bolide events in recent decades was detected by the US Government sensors (USGS) over remote areas of the Bering Sea on December 18, 2018, 23:48 UT. No ground-based optical observations exist. Aims. Using the satellite imagery of the dust trail left behind by the bolide, we tried to reconstruct the bolide trajectory. In combination with the bolide speed reported by the USGS, we computed the pre-atmospheric orbit. Observations in various spectral bands from 0.4 to 13.3 μm enabled us to study the dust properties. Methods. Images of the dust trail and its shadow obtained from various angles by the Multi-angle Imaging SpectroRadiometer (MISR) on board the Terra polar satellite and geostationary satellites Himawari-8 and Geostationary Operational Environmental Satellite 17 (GOES-17) were used. The initial position and orientation of the trail was varied, and its projections into the geoid coordinate grid were computed and compared with real data. Trail motion due to atmospheric wind was taken into account. Radiances and reflectances of selected parts of the dust trail were taken from the Moderate-resolution Imaging Spectroradiometer (MODIS) on board Terra. Reflectance spectra were compared with asteroid spectra. Results. The bolide radiant was found to be 13° ± 9° from that reported by the USGS, at azimuth 130° (from south to west) and zenith distance 14°. The bolide position was confirmed, including the height of maximum dust deposition around 25 km. The incoming asteroid had to be quite strong to maintain a high speed down to this height. The speed of 32 km s−1, reported by the USGS, was found to be plausible. The orbit had a high inclination of about 50° and a perihelion distance between 0.95–1 AU. The semimajor axis could not be restricted well but was most probably between 1–3 AU. The dust reflectance was much lower in the blue than in the red, consistent with the material of A- or L-type asteroid. The absorption at 11 μm confirms the presence of crystalline silicates in the dust.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astronomy and Astrophysics

  • ISSN

    0004-6361

  • e-ISSN

    1432-0746

  • Volume of the periodical

    644

  • Issue of the periodical within the volume

    December 2020

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    15

  • Pages from-to

  • UT code for WoS article

    000596876300001

  • EID of the result in the Scopus database

    2-s2.0-85097346142