Assessment of ozone impact on forest vegetation using visible foliar injury, AOT40F exposure index and MDA concentration in two meteorologically contrasting years
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00020699%3A_____%2F25%3AN0000013" target="_blank" >RIV/00020699:_____/25:N0000013 - isvavai.cz</a>
Result on the web
<a href="https://jfs.agriculturejournals.cz/artkey/jfs-202501-0003_assessment-of-ozone-impact-on-forest-vegetation-using-visible-foliar-injury-aot40f-exposure-index-and-mda-conc.php" target="_blank" >https://jfs.agriculturejournals.cz/artkey/jfs-202501-0003_assessment-of-ozone-impact-on-forest-vegetation-using-visible-foliar-injury-aot40f-exposure-index-and-mda-conc.php</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17221/57/2024-JFS" target="_blank" >10.17221/57/2024-JFS</a>
Alternative languages
Result language
angličtina
Original language name
Assessment of ozone impact on forest vegetation using visible foliar injury, AOT40F exposure index and MDA concentration in two meteorologically contrasting years
Original language description
This study aimed to evaluate ozone (O3) phytotoxic potential using AOT40F (accumulated O3 concentration over a threshold of 40 ppb for forest protection), document visible foliar O3 injury across eight forest monitoring plots, analyse MDA (malondialdehyde) content in leaves and needles, and assess the relationship between visible injury and plot conditions. Initial findings are based on data from the 2021 and 2022 vegetation seasons. AOT40F values exceeded the critical level of 5 ppm·h–1 at all plots, with higher values in 2022. The correlation between AOT40F and visible injury was inconsistent; in 2021, minimal visible O3 injuries were observed, while these were more frequent in 2022, notably on Fagus sylvatica leaves. The altitude effect on O3 concentration indicates greater vegetation damage at higher altitudes. In contrast, the AOT40F-altitude relation was not significant. The 2021 vegetation season was characterised by lower temperatures and higher relative air humidity and soil moisture in comparison to 2022. Stomatal conductance conditions were similar in both years, except for lower soil moisture in 2022. Soil moisture, air humidity, and temperature together accounted for about 50% of the variance in visible injury in 2022. The findings suggest that the AOT40F capability for predicting damage to vegetation is limited and highlight the importance of future research focusing on stomatal O3 flux-based approaches.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10509 - Meteorology and atmospheric sciences
Result continuities
Project
<a href="/en/project/SS02030031" target="_blank" >SS02030031: Air quality Research, Assessment and Monitoring Integrated System</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2025
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Forest Science
ISSN
1212-4834
e-ISSN
1805-935X
Volume of the periodical
71
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
17
Pages from-to
40-56
UT code for WoS article
001408185600001
EID of the result in the Scopus database
2-s2.0-85216464209