All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Thermodynamics, crystal chemistry and structural complexity of the Fe(SO4)(OH)(H2O)x phases: Fe(SO4)(OH), metahohmannite, butlerite, parabutlerite, amarantite, hohmannite, and fibroferrite

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023272%3A_____%2F18%3A10134316" target="_blank" >RIV/00023272:_____/18:10134316 - isvavai.cz</a>

  • Alternative codes found

    RIV/68378271:_____/18:00497031

  • Result on the web

    <a href="http://dx.doi.org/10.1127/ejm/2017/0029-2677" target="_blank" >http://dx.doi.org/10.1127/ejm/2017/0029-2677</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1127/ejm/2017/0029-2677" target="_blank" >10.1127/ejm/2017/0029-2677</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Thermodynamics, crystal chemistry and structural complexity of the Fe(SO4)(OH)(H2O)x phases: Fe(SO4)(OH), metahohmannite, butlerite, parabutlerite, amarantite, hohmannite, and fibroferrite

  • Original language description

    Using combination of acid-solution, high-temperature oxide-melt, relaxation, and differential scanning calorimetry, we have determined the thermodynamic properties of all phases in the system Fe(SO4)(OH)-H2O. Using these data, phase diagrams for low-temperature (25 degrees C) systems in contact with aqueous solutions predict that these phases should precipitate from extremely concentrated, low-pH solutions. In a relative humidity-temperature space, only Fe(SO4)(OH), parabutlerite, and amarantite have stability fields; the higher hydrates would require unrealistically high air humidities to form as stable phases. High-temperature high-pressure phase diagrams produce reasonable topologies, although the details of the phase relations between Fe(SO4)(OH), Fe-2(SO4)(3), and hydronium jarosite deserve more work. We also present a new structural model for amarantite, including the positions of the H atoms, and an analysis of the hydrogen bonding network in this mineral. Using the concept of information density in minerals, the Fe(SO4)(OH)(H2O)(x) phases were analyzed. This analysis lends some validity to the premise that more complex structures are also the more stable ones, but other systems should be investigated to test these trends.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10504 - Mineralogy

Result continuities

  • Project

    <a href="/en/project/GA17-09161S" target="_blank" >GA17-09161S: Crystal structures, chemistry and stability of arsenate and sulfate minerals</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Journal of Mineralogy

  • ISSN

    0935-1221

  • e-ISSN

  • Volume of the periodical

    30

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    17

  • Pages from-to

    259-275

  • UT code for WoS article

    000444631000008

  • EID of the result in the Scopus database