All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An integrative phylogenetic approach for inferring relationships of fossil gobioids (Teleostei: Gobiiformes)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023272%3A_____%2F22%3A10135724" target="_blank" >RIV/00023272:_____/22:10135724 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11310/22:10453730

  • Result on the web

    <a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271121" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271121</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0271121" target="_blank" >10.1371/journal.pone.0271121</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    An integrative phylogenetic approach for inferring relationships of fossil gobioids (Teleostei: Gobiiformes)

  • Original language description

    The suborder Gobioidei is among the most diverse groups of vertebrates, comprising about 2310 species. In the fossil record gobioids date back to the early Eocene (c. 50 m.y. ago), and a considerable increase in numbers of described species is evident since the middle Miocene (c. 16 m.y. ago). About 40 skeleton-based gobioid species and &gt; 100 otolith-based species have been described until to date. However, assignment of a fossil gobioid species to specific families has often remained tentative, even if well preserved complete specimens are available. The reasons are that synapomorphies that can be recognized in a fossil skeleton are rare (or absent) and that no phylogenetic framework applicable to gobioid fossils exists. Here we aim to overcome this problem by developing a phylogenetic total evidence framework that is suitable to place a fossil skeleton-based gobioid at family level. Using both literature and newly collected data we assembled a morphological character matrix (48 characters) for 29 extant species, representing all extant gobioid families, and ten fossil gobioid species, and we compiled a multi-gene concatenated alignment (supermatrix; 6271 bp) of published molecular sequence data for the extant species. Bayesian and Maximum Parsimony analyses revealed that our selection of extant species was sufficient to achieve a molecular &apos;backbone&apos; that fully conforms to previous molecular work. Our data revealed that inclusion of all fossil species simultaneously produced very poorly resolved trees, even for some extant taxa. In contrast, addition of a single fossil species to the total evidence data set of the extant species provided new insight in its possible placement at family level, especially in a Bayesian framework. Five out of the ten fossil species were recovered in the same family as had been suggested in previous works based on comparative morphology. The remaining five fossil species had hitherto been left as family incertae sedis.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10613 - Zoology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PLoS ONE

  • ISSN

    1932-6203

  • e-ISSN

  • Volume of the periodical

    17

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    29

  • Pages from-to

    1-29

  • UT code for WoS article

    000844536800119

  • EID of the result in the Scopus database