All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

First trimester prediction models for small-for- gestational age and fetal growth restricted fetuses without the presence of preeclampsia

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023698%3A_____%2F23%3AN0000034" target="_blank" >RIV/00023698:_____/23:N0000034 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11120/23:43926148

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0890850823000506?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0890850823000506?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.mcp.2023.101941" target="_blank" >10.1016/j.mcp.2023.101941</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    First trimester prediction models for small-for- gestational age and fetal growth restricted fetuses without the presence of preeclampsia

  • Original language description

    We established efficient first trimester prediction models for small-for-gestational age (SGA) and fetal growth restriction (FGR) without the presence of preeclampsia (PE) regardless of the gestational age of the onset of the disease [early FGR occurring before 32 gestational week or late FGR occurring after 32 gestational week]. The retrospective study was performed on singleton Caucasian pregnancies (n = 6440) during the period 11/2012-3/ 2020. Finally, 4469 out of 6440 pregnancies had complete medical records since they delivered in the Institute for the Care of Mother and Child, Prague, Czech Republic. The study included all cases diagnosed with SGA (n = 37) or FGR (n = 82) without PE, and 80 selected normal pregnancies. Four microRNAs (miR-1-3p, miR-20a-5p, miR-146a-5p, and miR-181a-5p) identified 75.68 % SGA cases at 10.0 % false positive rate (FPR). Eight microRNAs (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-126-3p, miR-130b-3p, miR-146a-5p, miR-181a-5p, and miR-499a-5p) identified 83.80 % SGA cases at 10.0 % FPR. The prediction model for SGA based on microRNAs was further improved via implementation of maternal clinical characteristics [maternal age and BMI, an infer-tility treatment by assisted reproductive technology (ART), first trimester screening for PE and/or FGR and for spontaneous preterm, both by FMF algorithm]. Then 81.08 % and 89.19 % pregnancies developing SGA were identified at 10.0 % FPR in case of utilization of 4 microRNA and 8 microRNA biomarkers. Simplified prediction model for SGA based on limited number of maternal clinical characteristics (maternal age and BMI, an infertility treatment by ART, and 4 microRNAs) does not improve the detection rate of SGA (70.27 % SGA cases at 10.0 % FPR) when compared with prediction model for SGA based just on the expression profile of 4 or 8 microRNAs biomarkers. Seven microRNAs only (miR-16-5p, miR-20a-5p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-342-3p, and miR-574-3p) identified 42.68 % FGR cases at 10.0 % FPR (AUC 0.725). However, the combination of 10 microRNAs only (miR-16-5p, miR-20a-5p, miR-100-5p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-195-5p, miR-342-3p, and miR-574-3p) reached a higher discrimination power (AUC 0.774). It identified 40.24 % FGR cases at 10.0 % FPR. The prediction model for any subtype of FGR based on microRNAs was further improved via implementation of maternal clinical characteristics [maternal age and BMI, an infertility treatment by ART, the parity (nulliparity), the occurrence of SGA or FGR in previous gestation, and the occurrence of any autoimmune disorder, and the presence of chronic hypertension]. Then 64.63 % and 65.85 % pregnancies destinated to develop FGR were identified at 10.0 % FPR in case of utilization of 7 microRNA biomarkers or 10 microRNA biomarkers. When other clinical variables next to those ones mentioned above such as first trimester screening for PE and/or FGR and for spontaneous preterm, both by FMF algorithm, were added to the prediction model for FGR, the detection power was even increased to 74.39 % cases and 78.05 % cases at 10.0 % FPR.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    MOLECULAR AND CELLULAR PROBES

  • ISSN

    0890-8508

  • e-ISSN

    1096-1194

  • Volume of the periodical

    72

  • Issue of the periodical within the volume

    DEC 2023

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    101941

  • UT code for WoS article

    001150071800001

  • EID of the result in the Scopus database

    2-s2.0-85178655078