Imputing missing data of function and disease activity in rheumatoid arthritis registers: what is the best technique?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023728%3A_____%2F19%3AN0000036" target="_blank" >RIV/00023728:_____/19:N0000036 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11110/19:10408799
Result on the web
<a href="http://dx.doi.org/10.1136/rmdopen-2019-000994" target="_blank" >http://dx.doi.org/10.1136/rmdopen-2019-000994</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1136/rmdopen-2019-000994" target="_blank" >10.1136/rmdopen-2019-000994</a>
Alternative languages
Result language
angličtina
Original language name
Imputing missing data of function and disease activity in rheumatoid arthritis registers: what is the best technique?
Original language description
To compare several methods of missing data imputation for function (Health Assessment Questionnaire) and for disease activity (Disease Activity Score-28 and Clinical Disease Activity Index) in rheumatoid arthritis (RA) patients. One thousand RA patients from observational cohort studies with complete data for function and disease activity at baseline, 6, 12 and 24 months were selected to conduct a simulation study. Values were deleted at random or following a predicted attrition bias. Three types of imputation were performed: (1) methods imputing forward in time (last observation carried forward; linear forward extrapolation); (2) methods considering data both forward and backward in time (nearest available observation-NAO; linear extrapolation; polynomial extrapolation); and (3) methods using multi-individual models (linear mixed effects cubic regression-LME3; multiple imputation by chained equation-MICE). The performance of each estimation method was assessed using the difference between the mean outcome value, the remission and low disease activity rates after imputation of the missing values and the true value. When imputing missing baseline values, all methods underestimated equally the true value, but LME3 and MICE correctly estimated remission and low disease activity rates. When imputing missing follow-up values at 6, 12, or 24 months, NAO provided the least biassed estimate of the mean disease activity and corresponding remission rate. These results were not affected by the presence of attrition bias. When imputing function and disease activity in large registers of active RA patients, researchers can consider the use of a simple method such as NAO for missing follow-up data, and the use of mixed-effects regression or multiple imputation for baseline data.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30226 - Rheumatology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
RMD Open
ISSN
2056-5933
e-ISSN
2056-5933
Volume of the periodical
5
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
8
Pages from-to
UNSP e000994
UT code for WoS article
000496133800034
EID of the result in the Scopus database
2-s2.0-85073717875