Doubly trained evolution control for the surrogate CMA-ES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F16%3A43915095" target="_blank" >RIV/00023752:_____/16:43915095 - isvavai.cz</a>
Alternative codes found
RIV/67985807:_____/16:00466878
Result on the web
<a href="http://link.springer.com/chapter/10.1007%2F978-3-319-45823-6_6" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-45823-6_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-45823-6_6" target="_blank" >10.1007/978-3-319-45823-6_6</a>
Alternative languages
Result language
angličtina
Original language name
Doubly trained evolution control for the surrogate CMA-ES
Original language description
This paper presents a new variant of surrogate-model utilization in expensive continuous evolutionary black-box optimization. This algorithm is based on the surrogate version of the CMA-ES, the Surrogate Covariance Matrix Adaptation Evolution Strategy (S-CMA-ES). Similarly to the original S-CMA-ES, expensive function evaluations are saved through a surrogate model. However, the model is retrained after the points in which its prediction was most uncertain have been evaluated by the true fitness in each generation. We demonstrate that within small budget of evaluations, the new variant of S-CMA-ES improves the original algorithm and outperforms two state-of-the-art surrogate optimizers, except a few evaluations at the beginning of the optimization process.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
FH - Neurology, neuro-surgery, nuero-sciences
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
14th International Conference on Parallel Problem Solving from Nature, PPSN 2016; Edinburgh; United Kingdom; 17 September 2016 through 21 September 2016
ISBN
978-3-319-45822-9
ISSN
0302-9743
e-ISSN
—
Number of pages
10
Pages from-to
59-68
Publisher name
Springer International Publishing
Place of publication
Cham
Event location
Edinburgh; United Kingdom
Event date
Sep 17, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—