Overview of surrogate-model versions of covariance matrix adaptation evolution strategy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F17%3A43918928" target="_blank" >RIV/00023752:_____/17:43918928 - isvavai.cz</a>
Alternative codes found
RIV/67985807:_____/17:00477762
Result on the web
<a href="https://dl.acm.org/citation.cfm?doid=3067695.3082539" target="_blank" >https://dl.acm.org/citation.cfm?doid=3067695.3082539</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3067695.3082539" target="_blank" >10.1145/3067695.3082539</a>
Alternative languages
Result language
angličtina
Original language name
Overview of surrogate-model versions of covariance matrix adaptation evolution strategy
Original language description
Evaluation of real-world black-box objective functions is in many optimization problems very time-consuming or expensive. Therefore, surrogate regression models, used instead of the expensive objective function and in that way decreasing the number of its evaluations, have received a lot of attention. Here, we briefly survey surrogate-Assisted versions of the state-of-The-Art algorithm for continuous black-box optimization-the CMA-ES (Covariance Matrix Adaptation Evolution Strategy). We compare five of them, together with the original CMA-ES, on the noiseless benchmarks of the Comparing-Continuous-Optimisers platform in the expensive scenario, where only a small budget of evaluations is available.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LO1611" target="_blank" >LO1611: Sustainability for The National Institute of Mental Health</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
GECCO 2017. Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2017; Berlin; Germany; 15 July 2017 through 19 July 2017
ISBN
978-1-4503-4939-0
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
1622-1629
Publisher name
ACM
Place of publication
New York
Event location
Berlin, Germany
Event date
Jul 15, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—