Improvement of Sleep Spindle Detection by Aggregation Techniques
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F20%3A43919974" target="_blank" >RIV/00023752:_____/20:43919974 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/20:00335281 RIV/68407700:21460/20:00335281 RIV/68407700:21730/20:00335281
Result on the web
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-31635-8_27" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-31635-8_27</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-31635-8_27" target="_blank" >10.1007/978-3-030-31635-8_27</a>
Alternative languages
Result language
angličtina
Original language name
Improvement of Sleep Spindle Detection by Aggregation Techniques
Original language description
The study focuses on automatic sleep spindle detection. Plenty of methods have been proposed in previous decades. However, there is still space for improvement. In this study, we investigate aggregation methods such as voting to achieve better results. We employ an unweighted model and two weighted voting models in which assigned weights represent reliability of automatic detectors. First weighted model utilizes supervised approach based on logistic regression. The second one applies unsupervised generative Bayesian model often used in crowdsourcing. Using the expectation maximization algorithm, we uncover hidden true labels and weighs of detectors. We test methods on the real world datasets. The aggregation method overcome single detectors on 10% on average in terms of F1. Moreover, a probabilistic explanation of weights could be used in applications for visual analysis.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20601 - Medical engineering
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
15th Mediterranean Conference on Medical and Biological Engineering and Computing, MEDICON 2019; Coimbra; Portugal; 26 September 2019 through 28 September 2019
ISBN
978-3-030-31634-1
ISSN
1680-0737
e-ISSN
—
Number of pages
8
Pages from-to
226-234
Publisher name
Springer International Publishing
Place of publication
Cham
Event location
Coimbra, Portugal
Event date
Sep 26, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—