Geometrical properties of equipotential surfaces and their numerical studies for high resolution Earth?s gravity field models expresses in ellipsoidal harmonics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F11%3A%230001785" target="_blank" >RIV/00025615:_____/11:#0001785 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Geometrical properties of equipotential surfaces and their numerical studies for high resolution Earth?s gravity field models expresses in ellipsoidal harmonics
Original language description
In gravity field studies the complex geometry of the Earth?s surface makes the solution of potential problems rather demanding. Therefore, Green?s functions, integral equations or linear systems associated with direct methods are usually constructed forsolution domains slightly simplified compared to reality. The measure of the simplification affects the convergence of iterations applied in the solution. Often a sphere is used, but this seems not adequate for a global approach. In the paper the construction of a reproducing kernel in Hilbert?s space of functions harmonic in the exterior of an ellipsoid of revolution is discussed. Ellipsoidal harmonics offer the corresponding apparatus, but the structure of the kernel becomes rather complex. Two possibilities to overcome the problem are considered. First an approximation of ellipsoidal harmonics based on a simplified version of Legendre?s ordinary differential equation is used. Subsequently an exact numerical approach is applied as an
Czech name
—
Czech description
—
Classification
Type
A - Audiovisual production
CEP classification
DE - Earth magnetism, geodesy, geography
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC506" target="_blank" >LC506: Recent dynamics of the Earth</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
—
Place of publication
Melbourne
Publisher/client name
International Union of Geodesy and Geophysics
Version
—
Carrier ID
—