Method of Successive Approximations in Solving Geodetic Boundary Value Problems - Analysis and a Numerical Approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F12%3A%230001779" target="_blank" >RIV/00025615:_____/12:#0001779 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-22078-4_28" target="_blank" >http://dx.doi.org/10.1007/978-3-642-22078-4_28</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-22078-4_28" target="_blank" >10.1007/978-3-642-22078-4_28</a>
Alternative languages
Result language
angličtina
Original language name
Method of Successive Approximations in Solving Geodetic Boundary Value Problems - Analysis and a Numerical Approach
Original language description
After an introductory note reviewing the role and the treatment of boundary problems in physical geodesy, the explanation rests on the concept of the weak solution. The focus is on the linear gravimetric boundary value problem. In this case, however, anoblique derivative in the boundary condition and the need for a numerical integration over the whole and complicated surface of the Earth make the numerical implementation of the concept rather demanding. The intention is to reduce the complexity by means of successive approximations and step by step to take into account effects caused by the obliqueness of the derivative and by the departure of the boundary from a more regular surface. The possibility to use a sphere or an ellipsoid of revolution as anapproximation sur-face is discussed with the aim to simplify the bilinear form that defines the problem under consideration and to justify the use of an approximation of Galerkin?s matrix. The discussion is added of extensive numeri-cal
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
DE - Earth magnetism, geodesy, geography
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC506" target="_blank" >LC506: Recent dynamics of the Earth</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
VII Hotine-Marussi Symposium on Mathematical Geodesy
ISBN
978-3-642-22077-7
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
189-198
Publisher name
Springer-Verlag
Place of publication
Berlin
Event location
Rome
Event date
Jun 6, 2009
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—