Reproducing Kernel Hilbert Space for the Exterior of an Ellipsoid and the Method of Successive Approximations in Solving GBVPs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F13%3A%230001898" target="_blank" >RIV/00025615:_____/13:#0001898 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Reproducing Kernel Hilbert Space for the Exterior of an Ellipsoid and the Method of Successive Approximations in Solving GBVPs
Original language description
The discussion starts with a general review of iteration concepts as applied for solving BVPs in gravity field studies. The subsequent explanations rest on the weak formulation of the problems. This enables a natural transition to an interpretation of the solution in terms of function bases. However, the need for an integration over the complicated surface of the Earth and an oblique derivative in the boundary condition make the computation of the entries in Galerkin?s matrix extremely demanding. Therefore, an alternative is considered. For constructing Galerkin?s approximations a function basis is generated by the reproducing kernel of the Hilbert space of functions that are harmonic outside an ellipsoid. Obviously, the method of successive approximations is then applied to account for corrections due to the departure of the real boundary from the ellipsoid and due to the obliqueness of the derivative in the boundary condition. The explanations concerning the construction and computat
Czech name
—
Czech description
—
Classification
Type
A - Audiovisual production
CEP classification
DE - Earth magnetism, geodesy, geography
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - New Technologies for Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
—
Place of publication
Rome
Publisher/client name
International Association of Geodesy
Version
—
Carrier ID
—