All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Reproducing Kernel Hilbert Space for the Exterior of an Ellipsoid and the Method of Successive Approximations in Solving GBVPs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F13%3A%230001898" target="_blank" >RIV/00025615:_____/13:#0001898 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Reproducing Kernel Hilbert Space for the Exterior of an Ellipsoid and the Method of Successive Approximations in Solving GBVPs

  • Original language description

    The discussion starts with a general review of iteration concepts as applied for solving BVPs in gravity field studies. The subsequent explanations rest on the weak formulation of the problems. This enables a natural transition to an interpretation of the solution in terms of function bases. However, the need for an integration over the complicated surface of the Earth and an oblique derivative in the boundary condition make the computation of the entries in Galerkin?s matrix extremely demanding. Therefore, an alternative is considered. For constructing Galerkin?s approximations a function basis is generated by the reproducing kernel of the Hilbert space of functions that are harmonic outside an ellipsoid. Obviously, the method of successive approximations is then applied to account for corrections due to the departure of the real boundary from the ellipsoid and due to the obliqueness of the derivative in the boundary condition. The explanations concerning the construction and computat

  • Czech name

  • Czech description

Classification

  • Type

    A - Audiovisual production

  • CEP classification

    DE - Earth magnetism, geodesy, geography

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - New Technologies for Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • ISBN

  • Place of publication

    Rome

  • Publisher/client name

    International Association of Geodesy

  • Version

  • Carrier ID