Elementary potentials and Galerkin?s matrix for an ellipsoidal domain in the recovery of the gravity field
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F15%3A%230002196" target="_blank" >RIV/00025615:_____/15:#0002196 - isvavai.cz</a>
Result on the web
<a href="http://www.czech-in.org/cmdownload/IUGG2015/presentations/IUGG-5236.pdf" target="_blank" >http://www.czech-in.org/cmdownload/IUGG2015/presentations/IUGG-5236.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Elementary potentials and Galerkin?s matrix for an ellipsoidal domain in the recovery of the gravity field
Original language description
The motivation comes from the role of boundary value problems in Earth?s gravity field studies. The focus is on Neumann?s problem in the exterior of an oblate ellipsoid of revolution. The approach follows the concept of variational methods and the notionof the weak solution. The solution of the problem is approximated by linear combinations of basis functions with scalar coefficients, i.e. by Galerkin approximations. The aim is to discuss the construction of Galerkin?s matrix for elementary potentialsused in quality of a function basis. The computation of the entries of Galerkin?s matrix is expected to be simple for the elementary functions like these. Nevertheless, the opposite is true. Ellipsoidal harmonics are applied as a natural tool. The problem, however, is the summation of the series that represent the entries. It is difficult to reduce the number of summation indices since in the ellipsoidal case there is no analogue to the addition theorem known for spherical harmonics. Thi
Czech name
—
Czech description
—
Classification
Type
A - Audiovisual production
CEP classification
DE - Earth magnetism, geodesy, geography
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-34595S" target="_blank" >GA14-34595S: Mathematical methods for Earth’s gravity field studies</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
—
Place of publication
Praha
Publisher/client name
International Union of Geodesy and Geophysics
Version
—
Carrier ID
—