All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Comparative analysis of real-time precise point positioning zenith total delay estimates

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F15%3A%230002209" target="_blank" >RIV/00025615:_____/15:#0002209 - isvavai.cz</a>

  • Result on the web

    <a href="http://80.link.springer.com.dialog.cvut.cz/article/10.1007/s10291-014-0427-z" target="_blank" >http://80.link.springer.com.dialog.cvut.cz/article/10.1007/s10291-014-0427-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10291-014-0427-z" target="_blank" >10.1007/s10291-014-0427-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Comparative analysis of real-time precise point positioning zenith total delay estimates

  • Original language description

    The continuous evolution of global navigation satellite systems (GNSS) meteorology has led to an increased use of associated observations for operational modern low-latency numerical weather prediction (NWP) models, which assimilate GNSS-derived zenith total delay (ZTD) estimates. The suitability of real-time ZTD estimates obtained from three different precise point positioning software packages has been assessed by comparing them with the state-of-the-art IGS final troposphere product as well as collocated radiosonde (RS) observations. The ZTD estimates obtained by BNC2.7 show a mean bias of 0.21 cm, and those obtained by the G-Nut/Tefnut software library show a mean bias of 1.09 cm to the IGS final troposphere product. In comparison with the RS-based ZTD, the BNC2.7 solutions show mean biases between 1 and 2 cm, whereas the G-Nut/Tefnut solutions show mean biases between 2 and 3 cm with the RS-based ZTD, and the ambiguity float and ambiguity fixed solutions obtained by PPP-Wizard have mean biases between 6 and 7 cm with the references. The large biases in the time series from PPP-Wizard are due to the fact that this software has been developed for kinematic applications and hence does not apply receiver antenna eccentricity and phase center offset (PCO) corrections on the observations. Application of the eccentricity and PCO corrections to the a priori coordinates has resulted in a 66 % reduction of bias in the PPP-Wizard solutions. A millimeter-level impact on the ZTD estimates has also been observed in relation to ambiguity resolution. As a result of a comparison with the established user requirements for NWP nowcasting, it was found that both the G-Nut/Tefnut solutions and one of the BNC2.7 solutions meet the threshold requirements, whereas one of the BNC2.7 solution and both the PPP-Wizard solutions currently exceed this threshold.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    DG - Atmospheric sciences, meteorology

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    GPS Solutions

  • ISSN

    1080-5370

  • e-ISSN

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    13

  • Pages from-to

    187-199

  • UT code for WoS article

    000372755500005

  • EID of the result in the Scopus database