Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F16%3AN0000057" target="_blank" >RIV/00025615:_____/16:N0000057 - isvavai.cz</a>
Result on the web
<a href="http://www.atmos-meas-tech.net/9/5385/2016/" target="_blank" >http://www.atmos-meas-tech.net/9/5385/2016/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5194/amt-9-5385-2016" target="_blank" >10.5194/amt-9-5385-2016</a>
Alternative languages
Result language
angličtina
Original language name
Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe
Original language description
Global navigation satellite systems (GNSSs) have revolutionised positioning, navigation, and timing, becoming a common part of our everyday life. Aside from these well-known civilian and commercial applications, GNSS is now an established atmospheric observing system, which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60–70 % of atmospheric warming. In Europe, the application of GNSS in meteorology started roughly two decades ago, and today it is a well-established field in both research and operation. This review covers the state of the art in GNSS meteorology in Europe. The advances in GNSS processing for derivation of tropospheric products, application of GNSS tropospheric products in operational weather prediction and application of GNSS tropospheric products for climate monitoring are discussed. The GNSS processing techniques and tropospheric products are reviewed. A summary of the use of the products for validation and impact studies with operational numerical weather prediction (NWP) models as well as very short weather prediction (nowcasting) case studies is given. Climate research with GNSSs is an emerging field of research, but the studies so far have been limited to comparison with climate models and derivation of trends. More than 15 years of GNSS meteorology in Europe has already achieved outstanding cooperation between the atmospheric and geodetic communities. It is now feasible to develop next-generation GNSS tropospheric products and applications that can enhance the quality of weather forecasts and climate monitoring. This work is carried out within COST Action ES1206 advanced global navigation satellite systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC, http://gnss4swec.knmi.nl).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
DG - Atmospheric sciences, meteorology
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Atmospheric Measurement Techniques
ISSN
1867-1381
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
11
Country of publishing house
DE - GERMANY
Number of pages
22
Pages from-to
5385-5406
UT code for WoS article
000387454500002
EID of the result in the Scopus database
—