Tropospheric products of the second GOP European GNSS reprocessing (1996–2014)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F17%3AN0000023" target="_blank" >RIV/00025615:_____/17:N0000023 - isvavai.cz</a>
Result on the web
<a href="https://www.atmos-meas-tech.net/10/3589/2017/" target="_blank" >https://www.atmos-meas-tech.net/10/3589/2017/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5194/amt-10-3589-2017" target="_blank" >10.5194/amt-10-3589-2017</a>
Alternative languages
Result language
angličtina
Original language name
Tropospheric products of the second GOP European GNSS reprocessing (1996–2014)
Original language description
In this paper, we present results of the second reprocessing of all data from 1996 to 2014 from all stations in International Association of Geodesy (IAG) Reference Frame Sub-Commission for Europe (EUREF) Permanent Network (EPN) as performed at the Geodetic Observatory Pecný (GOP). While the original goal of this research was to ultimately contribute to the realization of a new European Terrestrial Reference System (ETRS), we also aim to provide a new set of GNSS (Global Navigation Satellite System) tropospheric parameter time series with possible applications to climate research. To achieve these goals, we improved a strategy to guarantee the continuity of these tropospheric parameters and we prepared several variants of troposphere modelling. We then assessed all solutions in terms of the repeatability of coordinates as an internal evaluation of applied models and strategies and in terms of zenith tropospheric delays (ZTDs) and horizontal gradients with those of the ERA-Interim numerical weather model (NWM) reanalysis. When compared to the GOP Repro1 (first EUREF reprocessing) solution, the results of the GOP Repro2 (second EUREF reprocessing) yielded improvements of approximately 50 and 25 % in the repeatability of the horizontal and vertical components, respectively, and of approximately 9 % in tropospheric parameters. Vertical repeatability was reduced from 4.14 to 3.73 mm when using the VMF1 mapping function, a priori ZHD (zenith hydrostatic delay), and non-tidal atmospheric loading corrections from actual weather data. Raising the elevation cut-off angle from 3 to 7° and then to 10° increased RMS from coordinates' repeatability, which was then confirmed by independently comparing GNSS tropospheric parameters with the NWM reanalysis. The assessment of tropospheric horizontal gradients with respect to the ERA-Interim revealed a strong sensitivity of estimated gradients to the quality of GNSS antenna tracking performance. This impact was demonstrated at the Mallorca station, where gradients systematically grew up to 5 mm during the period between 2003 and 2008, before this behaviour disappeared when the antenna at the station was changed. The impact of processing variants on long-term ZTD trend estimates was assessed at 172 EUREF stations with time series longer than 10 years. The most significant site-specific impact was due to the non-tidal atmospheric loading followed by the impact of changing the elevation cut-off angle from 3 to 10°. The other processing strategy had a very small or negligible impact on estimated trends.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10509 - Meteorology and atmospheric sciences
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Atmospheric Measurement Techniques
ISSN
1867-1381
e-ISSN
1867-8548
Volume of the periodical
10
Issue of the periodical within the volume
9
Country of publishing house
DE - GERMANY
Number of pages
9
Pages from-to
3589-3607
UT code for WoS article
000412246100003
EID of the result in the Scopus database
—