All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Green’s Function Method Extended by Successive Approximations and Applied to Earth’s Gravity Field Recovery

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F19%3AN0000004" target="_blank" >RIV/00025615:_____/19:N0000004 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/1345_2019_67" target="_blank" >https://doi.org/10.1007/1345_2019_67</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/1345_2019_67" target="_blank" >10.1007/1345_2019_67</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Green’s Function Method Extended by Successive Approximations and Applied to Earth’s Gravity Field Recovery

  • Original language description

    The aim of the paper is to implement the Green’s function method for the solution of the Linear Gravimetric Boundary Value Problem. The approach is iterative by nature. A transformation of spatial (ellipsoidal) coordinates is used that offers a possibility for an alternative between the boundary complexity and the complexity of the coefficients of Laplace’s partial differential equation governing the solution. The solution domain is carried onto the exterior of an oblate ellipsoid of revolution. Obviously, the structure of Laplace’s operator is more complex after the transformation. It was deduced by means of tensor calculus and in a sense it reflects the geometrical nature of the Earth’s surface. Nevertheless, the construction of the respective Green’s function is simpler for the solution domain transformed. It gives Neumann’s function (Green’s function of the 2nd kind) for the exterior of an oblate ellipsoid of revolution. In combination with successive approximations it enables to meet also Laplace’s partial differential equation expressed in the system of new (i.e. transformed) coordinates.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the IX Hotine-Marussi Symposium

  • ISBN

  • ISSN

    0939-9585

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    33-39

  • Publisher name

    Springer Nature

  • Place of publication

    Cham

  • Event location

    Rome

  • Event date

    Jun 18, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article