Green’s Function Method Extended by Successive Approximations and Applied to Earth’s Gravity Field Recovery
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F19%3AN0000004" target="_blank" >RIV/00025615:_____/19:N0000004 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/1345_2019_67" target="_blank" >https://doi.org/10.1007/1345_2019_67</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/1345_2019_67" target="_blank" >10.1007/1345_2019_67</a>
Alternative languages
Result language
angličtina
Original language name
Green’s Function Method Extended by Successive Approximations and Applied to Earth’s Gravity Field Recovery
Original language description
The aim of the paper is to implement the Green’s function method for the solution of the Linear Gravimetric Boundary Value Problem. The approach is iterative by nature. A transformation of spatial (ellipsoidal) coordinates is used that offers a possibility for an alternative between the boundary complexity and the complexity of the coefficients of Laplace’s partial differential equation governing the solution. The solution domain is carried onto the exterior of an oblate ellipsoid of revolution. Obviously, the structure of Laplace’s operator is more complex after the transformation. It was deduced by means of tensor calculus and in a sense it reflects the geometrical nature of the Earth’s surface. Nevertheless, the construction of the respective Green’s function is simpler for the solution domain transformed. It gives Neumann’s function (Green’s function of the 2nd kind) for the exterior of an oblate ellipsoid of revolution. In combination with successive approximations it enables to meet also Laplace’s partial differential equation expressed in the system of new (i.e. transformed) coordinates.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/LO1506" target="_blank" >LO1506: Sustainability support of the centre NTIS - New Technologies for the Information Society</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the IX Hotine-Marussi Symposium
ISBN
—
ISSN
0939-9585
e-ISSN
—
Number of pages
7
Pages from-to
33-39
Publisher name
Springer Nature
Place of publication
Cham
Event location
Rome
Event date
Jun 18, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—