All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Importance of crustal relamination in origin of the orogenic mantle peridotite–high-pressure granulite association: example from the Náměšť Granulite Massif (Bohemian Massif, Czech Republic)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F15%3A00000187" target="_blank" >RIV/00025798:_____/15:00000187 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985530:_____/15:00444174

  • Result on the web

    <a href="http://jgs.lyellcollection.org/content/172/4/479.full.pdf+html" target="_blank" >http://jgs.lyellcollection.org/content/172/4/479.full.pdf+html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1144/jgs2014-070" target="_blank" >10.1144/jgs2014-070</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Importance of crustal relamination in origin of the orogenic mantle peridotite–high-pressure granulite association: example from the Náměšť Granulite Massif (Bohemian Massif, Czech Republic)

  • Original language description

    A characteristic association of crustal and mantle rocks is commonly used to decipher processes at the mantle– crust interface of HP–UHP collisional orogenic systems. Also, in the Variscan orogenic root of the Bohemian Massif (the Moldanubian Zone), high-pressure felsic granulites are often accompanied by spinel or garnet peridotites. This association was investigated using petrography, zircon geochronology and whole-rock geochemical data from the Náměšť Granulite Massif. The geochemical signature of the granulite is the same as for other Moldanubian occurrences, suggesting nearly isochemically metamorphosed felsic metaigneous rocks of Saxothuringian provenance. SHRIMP zircon dating yielded two main age maxima, at 395.2 ± 4.4 and 337.2 ± 1.7 Ma, reflecting an Early Devonian protolith and Visean HP metamorphism. As shown by Sr–Nd isotopic data, the variably refertilized harzburgite or depleted lherzolite was variously contaminated by mature crustal material resembling the studied granulites. To account for the origin of these HT–HP rock associations we suggest a new geotectonic model. An eastward continental subduction of Early Palaeozoic felsic metaigneous material of Saxothuringian origin was followed by its relamination at the bottom of the autochthonous lower crust. Ascending felsic granulites derived from the relaminated lower plate material sampled refertilized harzburgites originally formed in a backarc. The complete assemblage was subsequently exhumed, forming large, diapir-like bodies.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    DB - Geology and mineralogy

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of the Geological Society London

  • ISSN

    0016-7649

  • e-ISSN

  • Volume of the periodical

    172

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    479– 490

  • UT code for WoS article

    000356630500006

  • EID of the result in the Scopus database