The mid-Homerian (Silurian) biotic crisis in offshore settings of the Prague Synform, Czech Republic: Integration of the graptolite fossil record with conodonts, shelly fauna and carbon isotope data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F19%3A00000166" target="_blank" >RIV/00025798:_____/19:00000166 - isvavai.cz</a>
Alternative codes found
RIV/67985831:_____/19:00504740
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0031018218309040" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0031018218309040</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.palaeo.2019.04.026" target="_blank" >10.1016/j.palaeo.2019.04.026</a>
Alternative languages
Result language
angličtina
Original language name
The mid-Homerian (Silurian) biotic crisis in offshore settings of the Prague Synform, Czech Republic: Integration of the graptolite fossil record with conodonts, shelly fauna and carbon isotope data
Original language description
The middle Homerian biotic crisis resulted in the almost complete eradication of graptolites. The shale-dominated Kosov Quarry section, central Bohemia, preserves the most complete graptolite record across the crisis in peri-Gondwanan Europe. The pre-extinction graptolite assemblage of the upper lundgreni Biozone, composed of ten species vanished in three extinction phases recognized in an interval 1.6 m thick. The crisis commenced with the increasing dominance of generalist taxa and subsequent extinction of several abundant species including Cyrtograptus lundgreni. The second phase coincided with the extinctions of genera Cyrtograptus and Testograptus, whereas long-ranging, generalist monograptids prevailed before they became extinct as the crisis culminated in its third phase in the fiemingii Biozone. The lower part of the overlying parvus Biozone contains only Pristiograptus parvus, which became abundant in the upper part of the biozone, together with incoming Gothograptus nassa. The recovery interval is marked by a moderate diversification of monograptids and retiolitids. The extinction did not affect the diversity of pelagic cephalopods although their abundance was reduced. A bivalve-dominated benthic fauna disappeared throughout the extinction interval and re-appeared not earlier than in the latest Homerian. It was temporarily replaced by a time-specific fauna of anachronistic trilobites and brachiopods. The extinction interval coincided with sea-level fall, indicated by limestone slump-beds in a generally shaly succession. The post-extinction interval corresponds with a lowstand systems tract with deposition of condensed shelly limestone and burrowed shale. A positive carbon isotope excursion started in the fiemingii Biozone and delta C-13 values increased up to the lower parvus Biozone above which the plateau of the first peak started. The beginning of the graptolite extinction predated the early phase of the late Homerian carbon isotope excursion. The terminal phase of the extinction, nevertheless coincided with the onset of the carbon isotope excursion and change in benthic fauna.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10505 - Geology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Palaeogeography, Palaeoclimatology, Palaeoecology
ISSN
0031-0182
e-ISSN
—
Volume of the periodical
528
Issue of the periodical within the volume
August
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
14-34
UT code for WoS article
000472123900002
EID of the result in the Scopus database
2-s2.0-85065171262