All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Highly evolved miaskitic syenites deciphering the origin and nature of enriched mantle source of ultrapotassic magmatism in the Variscan orogenic root (Bohemian Massif, Moldanubian Zone)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F22%3A00000039" target="_blank" >RIV/00025798:_____/22:00000039 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14310/22:00126791

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0024493722002997" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0024493722002997</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.lithos.2022.106890" target="_blank" >10.1016/j.lithos.2022.106890</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Highly evolved miaskitic syenites deciphering the origin and nature of enriched mantle source of ultrapotassic magmatism in the Variscan orogenic root (Bohemian Massif, Moldanubian Zone)

  • Original language description

    A detailed study of alkali-rich syenites from the Gföhl unit of the Moldanubian Zone in the Bohemian Massif provides constraints on the exact origin and character of mantle source of ultrapotassic magmatism in the Variscan orogenic root in Central Europe. The syenites are characterized by highly alkaline composition (K2O 11.3–12.7 wtpercent; K2O/Na2O 6.8–7.5), crust-like isotopic signatures (87Sr/86Sr335 ∼ 0.7116; epsilonNd335 ≤ −7.8), and significant trace element enrichment (Th, U, Zr, Hf, LILE, LREE). They host an extraordinary amount of zircon (0.5–5 volpercent) along with subordinate titanite and apatite, reflecting their miaskitic affinity. Mineral chemistry suggests that syenites formed through fractional crystallization and accumulation from highly reduced, metaluminous to slightly peraluminous mantle-derived alkaline magmas. Whole-rock geochemistry and Sr-Nd isotopes provide direct evidence that they were produced by partial melting of metasomatic phlogopite-bearing vein network (glimmerites) in the lithospheric mantle, generated by the interaction of (U)HP fluids/melts derived from deeply subducted crustal material (Moldanubian granulites) with wall-rock peridotites. Low-degree partial melting of pure vein component produced unusual geochemical signatures of miaskitic syenites, compared to the composition of common ultrapotassic rocks in the Bohemian Massif, reflecting relatively higher degrees of partial melting of mixed glimmerite-peridotite mantle source. The emplacement of alkali-rich syenites was almost contemporaneous with the mantle source enrichment and closely followed by initial fast cooling dated by 40Ar/39Ar amphibole-biotite ages ranging between 329.8 ± 1.6 and 331.4 ± 0.7 Ma, corresponding to rapid exhumation of the Variscan orogenic root in Central Europe. The U-Pb apatite age of 305.9 ± 5.3 Ma likely reflects further cooling to lower temperatures. The syenite emplacement was linked to the early impulse of ultrapotassic magmatism associated with the Andean-type subduction of the Saxothuringian domain beneath the Moldanubian block. The close temporal association of K-rich magmatism in the Saxothuringian and Moldanubian Zone is indicated by identical cooling ages of miaskitic syenites and other Saxonian ultrapotassic rocks, as revealed by 40Ar/39Ar dates around 330 Ma.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10505 - Geology

Result continuities

  • Project

    <a href="/en/project/EF16_026%2F0008459" target="_blank" >EF16_026/0008459: Long-term research of geochemical barriers for nuclear waste disposal</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Lithos

  • ISSN

    0024-4937

  • e-ISSN

  • Volume of the periodical

    432–433

  • Issue of the periodical within the volume

    December : 106890

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    23

  • Pages from-to

    nestránkováno

  • UT code for WoS article

    000870985300004

  • EID of the result in the Scopus database

    2-s2.0-85139027674