All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Degassing from magma reservoir to eruption in silicic systems: The Li elemental and isotopic record from rhyolitic melt inclusions and host quartz in a Yellowstone rhyolite

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F22%3A00000046" target="_blank" >RIV/00025798:_____/22:00000046 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0016703722001648" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0016703722001648</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.gca.2022.03.037" target="_blank" >10.1016/j.gca.2022.03.037</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Degassing from magma reservoir to eruption in silicic systems: The Li elemental and isotopic record from rhyolitic melt inclusions and host quartz in a Yellowstone rhyolite

  • Original language description

    Lithium and hydrogen are volatile elements which diffuse rapidly in crystals and melt, making them powerful geochemical tools to reconstruct geological processes that take place on short time scales, such as syn- and post-eruptive degassing. Although the dynamics of hydrogen are fairly well understood to better constrain such processes, the assessment of Li behaviour within the magma reservoir relevant for ascent-related degassing still lacks detailed evaluation. Here, the first in situ Li concentrations and isotopic compositions (using SIMS analysis) of rhyolitic quartz-hosted, naturally glassy and crystallised melt inclusions (MIs) and groundmass glass (Mesa Falls Tuff, Yellowstone) are used to reconstruct Li elemental and isotopic evolution in the magma reservoir. Lithium concentrations in quartz-hosted glassy MIs (10–61 ppm) from a fallout deposit overlap with their groundmass glass (32–46 ppm) and their host quartz (8–15 ppm). Crystallised MIs from a later erupted flow pumice clast sample have higher Li concentrations (8–190 ppm) compared to the groundmass glass (32–51 ppm) and their host quartz (15–24 ppm). Lithium content in quartz from the early erupted sample is relatively homogenous, whereas it is up to a factor of two higher and heterogeneous in the later erupted sample, with a simultaneous increase in Li versus a decrease in H towards crystal rims. The d7Li difference (expressed as D7LiMI–glass) between MIs (-8.0per mille to + 12.3per mille) and groundmass glass (+9.0per mille to + 20.5per mille) of two pyroclastic deposits reaches up to 29per mille. Glassy MIs are internally heterogeneous in d7Li and Li abundance. The cores of the glassy MIs record the d7Li of the least modified melt during entrapment and the data distribution can be modelled by equilibrium fractionation between the melt and vapour phase during early open system degassing in the magma reservoir. Late degassing during eruption triggers Li–H diffusional exchange between quartz and melt, as the degassing of H2O and the accompanying pressure change trigger H diffusion out of the host quartz and the MIs, which is charge balanced by inward Li diffusion. This results in the modification of Li contents in quartz and d7Li values in the rims of the glassy MIs. Crystallised MIs reflect the loss of H2O from the MIs and the resulting enrichment of Li during the crystallisation. Additionally, the variations of d7Li in the groundmass glass can be explained through modelling by kinetic fractionation between the melt and vapour during late stage open-system degassing linked with magma ascent.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10505 - Geology

Result continuities

  • Project

    <a href="/en/project/GX19-29124X" target="_blank" >GX19-29124X: EVOLUTION AND POST-EMPLACEMENT HISTORY OF CARBONATITES: IMPLICATIONS FOR THE MOBILITY AND CONCENTRATION OF CRITICAL METALS</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Geochimica et Cosmochimica Acta

  • ISSN

    0016-7037

  • e-ISSN

  • Volume of the periodical

    326

  • Issue of the periodical within the volume

    June 1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    21

  • Pages from-to

    56-76

  • UT code for WoS article

    000795694600004

  • EID of the result in the Scopus database

    2-s2.0-85129273096