Cobalt-bearing copper slags from Luanshya (Zambian Copperbelt): Mineralogy, geochemistry, and potential recovery of critical metals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F22%3A00000221" target="_blank" >RIV/00025798:_____/22:00000221 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11310/22:10448476 RIV/60460709:41210/22:91064
Result on the web
<a href="https://doi.org/10.1016/j.gexplo.2022.106987" target="_blank" >https://doi.org/10.1016/j.gexplo.2022.106987</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.gexplo.2022.106987" target="_blank" >10.1016/j.gexplo.2022.106987</a>
Alternative languages
Result language
angličtina
Original language name
Cobalt-bearing copper slags from Luanshya (Zambian Copperbelt): Mineralogy, geochemistry, and potential recovery of critical metals
Original language description
Waste materials such as metallurgical slags can be considered as potential resources of valuable elements,including technologically critical metals. Copper slags from Luanshya, the oldest mining and smelting site in theZambian Copperbelt, produced by smelting local Cu ores in reverberatory furnaces between 1932 and 1999, weredeposited on two large dumps in the vicinity of the former ore processing area. The slags exhibit high concentrations of Co (247–5990 ppm, median: 2370 ppm) and Cu (1320–95,300 ppm, median: 8550 ppm). This multimethod mineralogical investigation indicates that the slags are predominantly composed of olivine, clinopyroxene, silicate glass, and spinel-family oxides. Copper-(Fe) sulfides, cobaltpentlandite [(Co,Fe)9S8], Fe sulfides, and metallic Cu prills embedded in the silicate matrix are the major hosts of Cu and Co. The EU regulatory leaching test (EN 12457-2) indicated that the release of contaminants is relatively low and only Cu slightly exceeded the EU limit values for landfilling of inert waste. The secondary phases (Cu hydroxosulfates, Fe (oxyhydr)oxides) observed on the slag surfaces confirm that the slags undergo a weathering process on thedumps. Kinetic abiotic extraction tests were carried out in 0.5 mol/l sulfuric acid at 25 ◦C and with a pulp density of 1percent to determine the release of metals from the milled Luanshya slags under conditions simulating hydrometallurgical recovery via agitation leaching. The Cu and Co extractability correlated with the bulk concentration of these elements, and the highest extraction yields after 24 h of leaching corresponded to 46percent of the total Cu and 67percent of the total Co. Despite the dramatic increase in Co prices on the global market, the Co recovery from the Luanshya slags appears to be non-economical due to the high costs of the necessary mechanical and chemical processing of the slag materials and the obtained extracts.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10505 - Geology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geochemical Exploration
ISSN
0375-6742
e-ISSN
—
Volume of the periodical
237
Issue of the periodical within the volume
June : 106987
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
nestránkováno
UT code for WoS article
000806555100001
EID of the result in the Scopus database
2-s2.0-85127366158