Arc-like magmatism in syn- to post-collisional setting: The Ediacaran Angra Fria Magmatic Complex (NW Namibia) and its cross-Atlantic correlatives in the south Brazilian Florianópolis Batholith
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025798%3A_____%2F23%3A10168557" target="_blank" >RIV/00025798:_____/23:10168557 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11310/23:10457232
Result on the web
<a href="https://doi.org/10.1016/j.jog.2022.101960" target="_blank" >https://doi.org/10.1016/j.jog.2022.101960</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jog.2022.101960" target="_blank" >10.1016/j.jog.2022.101960</a>
Alternative languages
Result language
angličtina
Original language name
Arc-like magmatism in syn- to post-collisional setting: The Ediacaran Angra Fria Magmatic Complex (NW Namibia) and its cross-Atlantic correlatives in the south Brazilian Florianópolis Batholith
Original language description
Ediacaran syn-tectonic plutonic rocks (amphibole gabbros, quartz diorites/tonalites to biotite- and muscovite-bearing granites) of the Angra Fria Magmatic Complex (Kaoko Belt, north-western Namibia) belong to two compositionally similar, magnesian, transitional tholeiitic-calc-alkaline suites, the Older (TILDE OPERATOR+D91625-620 Ma) and the Younger (TILDE OPERATOR+D91585-575 Ma). Both have counterparts in the broadly contemporaneous Florianópolis Batholith (southern Brazil), from which they were separated during the Cretaceous opening of the southern Atlantic. In the Angra Fria Magmatic Complex, the only unequivocal mantle contributions are identified in mingling zones of the Younger Suite and hybrid mafic-intermediate dykes of uncertain age. Previously published Hf-in-zircon isotopic data, together with new whole-rock geochemical and Sr-Nd isotopic signatures, underline an important role of crustal anatexis of a material with late Palaeoproterozoic to early Mesoproterozoic mean crustal residence (1.9-1.5 Ga). This interval resembles some of the published Nd model ages for Tonian 'Adamastor Rift'-related felsic magmatic rocks in the Namibian Coastal and Uruguayan Punta del Este terranes. In detail, the Older Suite probably originated mainly by fluid-present melting of metabasalts and metatonalites, followed by (near) closed-system fractional crystallization (with or without accumulation) of amphibole +- plagioclase. For the Younger Suite, the principal process was the dehydration melting of relatively felsic lower crustal protoliths (metagreywackes or intermediate-acid orthogneisses >> metapelites), leaving garnet in the residue. Based on the geological context, the conspicuous enrichment of hydrous-fluid-mobile large ion lithophile over the conservative high field strength elements is not interpreted through a classic model of oceanic plate subduction, devolatilization, and fluxed-melting of the overriding mantle wedge. Instead, it is thought to reflect high-grade metamorphism of deeply buried continental crust and attendant water-fluxed melting of the overlying crustal lithologies, connected with inversion of the Tonian 'Adamastor Rift'.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10505 - Geology
Result continuities
Project
<a href="/en/project/GA18-24281S" target="_blank" >GA18-24281S: Did the West-Gondwana orogens form by inversion of long-lived rift domains?</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geodynamics
ISSN
0264-3707
e-ISSN
—
Volume of the periodical
155
Issue of the periodical within the volume
March : 101960
Country of publishing house
GB - UNITED KINGDOM
Number of pages
27
Pages from-to
—
UT code for WoS article
000923253500001
EID of the result in the Scopus database
2-s2.0-85146070781