All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Plant Abiotic Stress Proteomics: An Insight into Plant Stress Response at Proteome Level

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027006%3A_____%2F19%3A00005410" target="_blank" >RIV/00027006:_____/19:00005410 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Plant Abiotic Stress Proteomics: An Insight into Plant Stress Response at Proteome Level

  • Original language description

    Abiotic stresses, namely drought, extreme temperatures, salinity, flooding and heavy metals pollution, adversely affect plant growth and development as well as crop yield. Since proteins are directly involved in plant stress responses, proteomics as a complex high-throughput approach represents a key tool to study molecular mechanisms underlying plant stress acclimation. In the present chapter, brief characteristics of major environmental stresses are provided with a focus on plant cellular structure and molecular processes. Dynamics of plant stress response is discussed with respect to a variety of biological processes involved in plant stress response from proteins involved in sensing and signalling, alterations in gene expression, protein metabolism, energy metabolism, carbohydrate metabolism and other metabolisms (phytohormons, secondary metabolites), stress- and defence-related proteins, structural and regulatory proteins as well as proteins associated with an induction of programmed cell death. A focus is also paid to stress description with respect to environment-related (e.g., soil water content, soil salinity) and plant-related characteristics (relative water content in plant tissues, salt ion levels in plant tissues) as well as differential biological roles of protein isoforms and post-translational modifications. Possible utilization of the results of proteomic studies in breeding of crops with improved stress tolerance is discussed. In conclusion, novel technologies of genome editing are briefly discussed with respect to their potential of protein designing; however, it should be kept in mind that the final biological function of a given protein is not only defined by its structure, but also by other factors including cellular microenvironment and interacting partners.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

    <a href="/en/project/QK1710302" target="_blank" >QK1710302: Improvement of common wheat tolerance to drought, frost, Phytophthora infestans and Fusarium head blight using genomics and proteomics approaches</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Handbook of plant and crop stress

  • ISBN

    978-0-8153-9082-4

  • Number of pages of the result

    24

  • Pages from-to

    207-230

  • Number of pages of the book

    950

  • Publisher name

    CRC Press

  • Place of publication

    Boca Raton

  • UT code for WoS chapter