Preliminary Findings on Cadmium Bioaccumulation and Photosynthesis in Rice (Oryza sativa L.) and Maize (Zea mays L.) Using Biochar Made from C3- and C4-Originated Straw
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027006%3A_____%2F22%3A10175792" target="_blank" >RIV/00027006:_____/22:10175792 - isvavai.cz</a>
Alternative codes found
RIV/60076658:12220/22:43904928
Result on the web
<a href="https://www.mdpi.com/2223-7747/11/11/1424/pdf?version=1653630597" target="_blank" >https://www.mdpi.com/2223-7747/11/11/1424/pdf?version=1653630597</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/plants11111424" target="_blank" >10.3390/plants11111424</a>
Alternative languages
Result language
angličtina
Original language name
Preliminary Findings on Cadmium Bioaccumulation and Photosynthesis in Rice (Oryza sativa L.) and Maize (Zea mays L.) Using Biochar Made from C3- and C4-Originated Straw
Original language description
Understanding the structural differences between feedstocks is critical for biochar effectiveness in plant growth. To examine the efficiency of biochars with unique physiological structures in a cadmium (Cd)-polluted soil, rice and maize as C3 and C4 plants, as well as biochar generated from their residues, defined as BC3 and BC4, were utilized. The experiment involved a control and a Cd-polluted soil (20 mg kg(-1)) without biochar application, and applications of each type of biochar (20 t ha(-1)) on Cd-polluted or unpolluted soil. In rice and maize fields, BC3 application led to the highest value of cation exchange capacity (CEC), with increases of 162% and 115%, respectively, over the control, while CEC increased by 110% and 71% with BC4 in the rice and maize field, respectively. As compared to the control, BC3 and BC4 dramatically enhanced the photosynthetic rate (Pn) of rice by 116% and 80%, respectively, and maize by 67% and 31%. BC3 and BC4 significantly decreased the Cd transfer coefficient in rice by 54% and 30% and in maize by 45% and 21%. Overall, BC3 is preferred over BC4 for establishing rice and maize in Cd-polluted soil, as it has a lower C/N ratio, a considerably higher surface area, and more notable alkaline features such as a higher CEC and nutrient storage.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
40106 - Agronomy, plant breeding and plant protection; (Agricultural biotechnology to be 4.4)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Plants-Basel
ISSN
2223-7747
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
11
Country of publishing house
CH - SWITZERLAND
Number of pages
12
Pages from-to
1424
UT code for WoS article
000809012000001
EID of the result in the Scopus database
2-s2.0-85130857573