Weathering fronts
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027073%3A_____%2F19%3AN0000012" target="_blank" >RIV/00027073:_____/19:N0000012 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0012825219300881" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0012825219300881</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.earscirev.2019.102925" target="_blank" >10.1016/j.earscirev.2019.102925</a>
Alternative languages
Result language
angličtina
Original language name
Weathering fronts
Original language description
A distinct boundary between unweathered and weathered rock that moves downward as weathering proceeds-the weathering front-is explicitly or implicitly part of landscape evolution concepts of etchplanation, triple planation, dynamic denudation, and weathering- and supply-limited landscapes. Weathering fronts also figure prominently in many models of soil, hillslope, and landscape evolution, and mass movements. Clear transitions from weathered to unweathered material, increasing alteration from underlying bedrock to the surface, and lateral continuity of weathering fronts are ideal or benchmark conditions. Weathered to unweathered transitions are often gradual, and weathering fronts may be geometrically complex. Some weathering profiles contain pockets of unweathered rock, and highly modified and unmodified parent material at similar depths in close proximity. They also reflect mass fluxes that are more varied than downward-percolating water and slope-parallel surface processes. Fluxes may also be upward, or lateral along lithological boundaries, structural features, and textural or weathering-related boundaries. Fluxes associated with roots, root channels, and faunal burrows may potentially occur in any direction. Just as pedology has broadened its traditional emphasis on top-down processes to incorporate various lateral fluxes, studies of weathering profiles are increasingly recognizing and incorporating multidirectional mass fluxes. Examples from karst systems may also be useful, where concepts of laterally continuous weathering fronts, rock-regolith boundaries, and water tables; and an assumption of dominantly diffuse downward percolation are generally inapplicable. We also question the idea of a single weathering front, and of a two-stage process of weathering rock to regolith, and transforming regolith to soil. In many cases there appears to be three stages involving conversion of bedrock to weathered rock, weathered rock to regolith, and regolith to soil.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
40104 - Soil science
Result continuities
Project
<a href="/en/project/GA19-09427S" target="_blank" >GA19-09427S: The mystery of biogenic soil creep: the biogeomorphic role of trees in temperate and tropical forests and its ecological consequences</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Earth-Science Reviews
ISSN
0012-8252
e-ISSN
1872-6828
Volume of the periodical
198
Issue of the periodical within the volume
November 2019
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
13
Pages from-to
102925
UT code for WoS article
000498752600004
EID of the result in the Scopus database
—