All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Indirect biogeomorphic and soil evolutionary effects of spruce bark beetle

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027073%3A_____%2F20%3AN0000028" target="_blank" >RIV/00027073:_____/20:N0000028 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0921818120302083" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0921818120302083</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.gloplacha.2020.103317" target="_blank" >10.1016/j.gloplacha.2020.103317</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Indirect biogeomorphic and soil evolutionary effects of spruce bark beetle

  • Original language description

    Outbreaks of bark beetles, for example Ips typographus L. in Eurasia or Dendroctonus ponderosae Hopkins in North America, have serious impacts on forest resources, biodiversity, and ecological dynamics, with economical and social ramifications. Moreover, many models predict increasing frequency and severity of such biotic disturbances due to ongoing climate change, and land use driven changes in forest structure and composition. Bark beetles are recognized as keystone species due to their strong and complex effects on ecosystem dynamics. However, due to the increasingly widely recognized biogeomorphic impacts of trees, bark beetles may have significant indirect biogeomorphic and pedogenetic impacts through their effects at scales ranging from individual trees to forest landscapes. These include: (1) Reduced uprooting, with associated impacts on topography, mass movements, regolith and soil formation, and slope hydrology; (2) Reductions in bioprotection via trapping of downslope sediment movement; (3) Hydrological impacts, including increased total runoff and increased proportion of subsurface flow; (4) Decreased microtopographic irregularity (and associated hydrological and pedological impacts); and (5) Changes in biochemical and biomechanical effects on soils, regolith, and hillslope morphology. Five separator factors (discriminators between different developmental trajectories) were revealed for the case of the central European region. These factors may determine the occurrence and severity of biogeomorphic impacts: First is whether the site is prone to potential uprooting or whether an spruce bark beetle (SBB) outbreak is initiated by a blowdown/uprooting event. Second is whether the site is dominated by mineral soils or Histosols. A third discriminating factor is whether the forest is managed or unmanaged, which determines the pre-attack tree species composition and coarse woody debris and disturbance regimes; and a fourth is the post-outbreak management. Finally, the fifth separator factor relates to slope thresholds that determine the significance of impacts on mass movements and erosion. These findings support the need, and provide guidelines, for research on geomorphic impacts of bark beetle infestations. Though we mainly restrict our consideration to bark beetles in Europe, both our approach and findings are likely to have broader relevance for biogeomorphic impacts of extensive tree mortality.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40102 - Forestry

Result continuities

  • Project

    <a href="/en/project/GA19-09427S" target="_blank" >GA19-09427S: The mystery of biogenic soil creep: the biogeomorphic role of trees in temperate and tropical forests and its ecological consequences</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Global and Planetary Change

  • ISSN

    0921-8181

  • e-ISSN

    1872-6364

  • Volume of the periodical

    195

  • Issue of the periodical within the volume

    December 2020

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    20

  • Pages from-to

    103317

  • UT code for WoS article

    000592360100001

  • EID of the result in the Scopus database

    2-s2.0-85090751255