Joint effects of climate, tree size, and year on annual tree growth derived from tree-ring records of ten globally distributed forests
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027073%3A_____%2F22%3AN0000012" target="_blank" >RIV/00027073:_____/22:N0000012 - isvavai.cz</a>
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/10.1111/gcb.15934" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1111/gcb.15934</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/gcb.15934" target="_blank" >10.1111/gcb.15934</a>
Alternative languages
Result language
angličtina
Original language name
Joint effects of climate, tree size, and year on annual tree growth derived from tree-ring records of ten globally distributed forests
Original language description
Tree rings provide an invaluable long-term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree-ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over >= 3-month seasonal windows) and negative to temperature (usually maximum temperature, over <= 3-month seasonal windows), with concave-down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10619 - Biodiversity conservation
Result continuities
Project
<a href="/en/project/GA19-09427S" target="_blank" >GA19-09427S: The mystery of biogenic soil creep: the biogeomorphic role of trees in temperate and tropical forests and its ecological consequences</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Global Change Biology
ISSN
1354-1013
e-ISSN
1365-2486
Volume of the periodical
28
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
245-266
UT code for WoS article
000712730300001
EID of the result in the Scopus database
2-s2.0-85118256936