All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

MOL-PCR and xMAP technology: fast multiplex method with hight sensitivity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027162%3A_____%2F19%3AN0000365" target="_blank" >RIV/00027162:_____/19:N0000365 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    MOL-PCR and xMAP technology: fast multiplex method with hight sensitivity

  • Original language description

    The world of diagnostics goes still forward and puts demands on laboratories especially in diagnostic of important infective agents. Methods for multiplex detection are mainly designed for relatively fast and cost-effective examination of wide spectrum of different analytes to save money and time and give a complex results. xMAP (x=analyte, MAP= Multi Analyte Profiling) technology provides qualitative analysis of various proteins or nucleic acids simultaneously in a single reaction and enables the direct detection, identification and typing of more than 50 different targets from one biological sample. This technology is based on multiplex oligonucleotide ligation – polymerase chain reaction (MOL-PCR) with an adaptation to xMAP detection system using different sets of microsphere in a liquid suspension. These are dyed of red and infrared fluorophores. The concentration of internal dyes gives to each set its unique spectral address. During MOL PCR, a pair of probes (MOLigo1 and MOLigo2) designed specific for target sequence binds to a searched part of analyte and the process of their ligation creates templates for amplification in PCR where the universal primer pair (one has a fluorescent label) is used. The specific part of one MOLigo probe contains the unique TAG sequence – oligonucleotide sequence complementary with an anti-TAG sequence covalently coupled on the microsphere surface. Thanks to this xTAG technology, amplified denaturized products hybridize to corresponding microspheres set. Use of different TAG/anti-TAG sequences enables multiplex and qualitative sample analysis in MAGPIX® instrument (Luminex Corporation) where the medium fluorescence intensity (MFI) is measured. During routine analysis, xMAP technology thus brings an opportunity to very quick identification of diverse targets (from gene expression monitoring to detection of nucleic acids, proteins, saccharides and another macromolecules) using small amount of examined material.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    <a href="/en/project/VI20152020044" target="_blank" >VI20152020044: Multiplex xMAP technology for a complex detection of pathogenic agents significant for the protection of human and animal health</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů