All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Genetic diversity, evolution and selection in the major histocompatibility complex DRB and DQB loci in the family Equidae

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00027162%3A_____%2F20%3AN0000114" target="_blank" >RIV/00027162:_____/20:N0000114 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14110/20:00118279 RIV/62157124:16170/20:43878556 RIV/62157124:16810/20:43878556

  • Result on the web

    <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525986/" target="_blank" >https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7525986/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s12864-020-07089-6" target="_blank" >10.1186/s12864-020-07089-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Genetic diversity, evolution and selection in the major histocompatibility complex DRB and DQB loci in the family Equidae

  • Original language description

    Background: The mammalian Major Histocompatibility Complex (MHC) is a genetic region containing highly polymorphic genes with immunological functions. MHC class I and class II genes encode antigen-presenting molecules expressed on the cell surface. The MHC class II sub-region contains genes expressed in antigen presenting cells. The antigen binding site is encoded by the second exon of genes encoding antigen presenting molecules. The exon 2 sequences of these MHC genes have evolved under the selective pressure of pathogens. Interspecific differences can be observed in the class II sub-region. The family Equidae includes a variety of domesticated, and free-ranging species inhabiting a range of habitats exposed to different pathogens and represents a model for studying this important part of the immunogenome. While equine MHC class II DRA and DQA loci have received attention, the genetic diversity and effects of selection on DRB and DQB loci have been largely overlooked. This study aimed to provide the first in-depth analysis of the MHC class II DRB and DQB loci in the Equidae family. Results: Three DRB and two DQB genes were identified in the genomes of all equids. The genes DRB2, DRB3 and DQB3 showed high sequence conservation, while polymorphisms were more frequent at ORB1 and DQB1 across all species analyzed. DQB2 was not found in the genome of the Asiatic asses Equus hemionus kulan and E. h. onager. The bioinformatic analysis of non-zero-coverage-bases of DRB and DQB genes in 14 equine individual genomes revealed differences among individual genes. Evidence for recombination was found for DRB1, DRB2, DQB1 and DQB2 genes. Trans-species allele sharing was identified in all genes except ORB1. Site-specific selection analysis predicted genes evolving under positive selection both at DRB and DQB loci. No selected amino acid sites were identified in DQB3. Conclusions: The organization of the MHC class II sub-region of equids is similar across all species of the family. Genomic sequences, along with phylogenetic trees suggesting effects of selection as well as trans-species polymorphism support the contention that pathogen-driven positive selection has shaped the MHC class II DRB/DQB sub-regions in the Equidae.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10603 - Genetics and heredity (medical genetics to be 3)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    BMC GENOMICS

  • ISSN

    1471-2164

  • e-ISSN

  • Volume of the periodical

    21

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    15

  • Pages from-to

    "677"

  • UT code for WoS article

    000576982800002

  • EID of the result in the Scopus database

    2-s2.0-85092323411