Automatic detection of high-frequency oscillations in invasive recordings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064203%3A_____%2F13%3A10389811" target="_blank" >RIV/00064203:_____/13:10389811 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/13:00205882 RIV/00216208:11130/13:10389811
Result on the web
<a href="https://doi.org/10.1109/MeMeA.2013.6549741" target="_blank" >https://doi.org/10.1109/MeMeA.2013.6549741</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/MeMeA.2013.6549741" target="_blank" >10.1109/MeMeA.2013.6549741</a>
Alternative languages
Result language
angličtina
Original language name
Automatic detection of high-frequency oscillations in invasive recordings
Original language description
High-frequency oscillations (HFOs) represent relatively new electrographic marker of epileptogenic tissue. It is starting to be used in presurgical examination to better plan surgical resection and to improve outcome of epilepsy surgery. Development of new techniques of unsupervised HFOs detection is required to further investigate the role of HFO in the pathophysiology of epilepsy and to increase the yield of presurgical examination. In this study we applied an envelope distribution modelling technique on experimental and human invasive data to detect HFOs. Application to experimental microelectrode recordings demonstrated satisfactory results with sensitivity 89.9% and false positive rate 2.1 per minute. Application of this algorithm to human invasive recordings achieved sensitivity 80%. High numbers of false positive detections required utilization of post-processing steps to eliminate the majority of them. This study shows that envelope distribution modelling represents a promising approach to detect HFOs in intracranial recordings. Advantages of this approach are quick adjustments to changes in background activity and resistance to signal non-stationarities. However, successful application to clinical practice requires development of secondary processing steps that will decrease the rate of false positive detections.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
30103 - Neurosciences (including psychophysiology)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
MeMeA 2013 - IEEE International Symposium on Medical Measurements and Applications, Proceedings
ISBN
978-1-4673-5196-6
ISSN
—
e-ISSN
neuvedeno
Number of pages
5
Pages from-to
228-232
Publisher name
IEEE
Place of publication
New York
Event location
Gatineau, QC
Event date
Mar 4, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000326748000048