All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Combined-Predictor Approach to Glycaemia Prediction for Type 1 Diabetes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064203%3A_____%2F19%3A10394150" target="_blank" >RIV/00064203:_____/19:10394150 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11130/19:10394150 RIV/68407700:21230/19:00321778 RIV/68407700:21460/19:00321778 RIV/68407700:21730/19:00321778

  • Result on the web

    <a href="https://doi.org/10.1007/978-981-10-9023-3_136" target="_blank" >https://doi.org/10.1007/978-981-10-9023-3_136</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-10-9023-3_136" target="_blank" >10.1007/978-981-10-9023-3_136</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Combined-Predictor Approach to Glycaemia Prediction for Type 1 Diabetes

  • Original language description

    Glycaemia prediction plays a vital role in preventing complications related to diabetes mellitus type 1, supporting physicians in their clinical decisions and motivating diabetics to improve their everyday life. Several algorithms, such as mathematical models or neural networks, have been proposed for blood glucose prediction. An approach of combining several glycaemia prediction models is proposed. The main idea of this framework is that the outcome of each prediction model becomes a new feature for a simple regressive model. This approach can be applied to combine any blood glycaemia prediction algorithms. As an example, the proposed method was used to combine an Autoregressive model with exogenous inputs, a Support Vector Regression model and an Extreme Learning Machine for regression model. The multiple-predictor was compared to these three prediction algorithms on the continuous glucose monitoring system and insulin pump readings of one type 1 diabetic patient for one month. The algorithms were evaluated in terms of root-mean-square error and Clarke error-grid analysis for 30, 45 and 60 min prediction horizons.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    30202 - Endocrinology and metabolism (including diabetes, hormones)

Result continuities

  • Project

    <a href="/en/project/NV15-25710A" target="_blank" >NV15-25710A: Individual dynamics of glycaemia excursions identification in diabetic patients to improve self managing procedures influencing insulin dosage</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    World Congress on Medical Physics and Biomedical Engineering 2018, Vol 3

  • ISBN

    978-981-10-9022-6

  • ISSN

    1680-0737

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    753-756

  • Publisher name

    Springer-Verlag

  • Place of publication

    New York

  • Event location

    Praha

  • Event date

    Jun 3, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000449744300136