All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Vascular Damage and Glycometabolic Control in Older Patients with Type 2 Diabetes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00098892%3A_____%2F23%3A10158042" target="_blank" >RIV/00098892:_____/23:10158042 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15110/23:73621511

  • Result on the web

    <a href="https://www.mdpi.com/2218-1989/13/3/382" target="_blank" >https://www.mdpi.com/2218-1989/13/3/382</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/metabo13030382" target="_blank" >10.3390/metabo13030382</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Vascular Damage and Glycometabolic Control in Older Patients with Type 2 Diabetes

  • Original language description

    Diabetes is one of the main risk factors for vascular damage, including endothelial dysfunction and arterial stiffness. The aim of this study was to compare selected parameters of vascular damage in patients with type 2 diabetes (T2D) in different age categories and to determine their relationship to indicators of glycometabolic control. A total of 160 patients with T2D were included in this cross-sectional study. They were divided into four age quartiles (with mean ages of 42.1 ± 4.5, 51.6 ± 1.4, 59.2 ± 3.0, and 69.8 ± 3.8, respectively). All subjects were evaluated for indicators of glycometabolic control and for arterial stiffness parameters along with markers of endothelial damage—tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) and von Willebrand factor (vWF). The oldest compared to the youngest participants showed significantly increased parameters of arterial stiffness (augmentation pressure 13.4 ± 8.6 vs. 6.7 ± 4.4 mm Hg, augmentation index 26.2 ± 11.3 vs. 19.6 ± 9.2 mm Hg, aortic pulse pressure 47.7 ± 17.1 vs. 33.7 ±10.4 mm Hg, and pulse wave velocity 11.9 (10.1–14.3) vs. 8.2 (7.7–9.8) m/s) despite having similar glycometabolic control. Arterial stiffness parameters were mainly associated with age and blood pressure. Age and systolic blood pressure were major determinants of arterial stiffness regardless of glycometabolic control. The oldest patients also had the highest levels of vWF (153.7 ± 51.9 vs. 121.7 ± 42.5 %) but the lowest levels of PAI-1 (81.8 ± 47.5 vs. 90.0 ± 44.9 ng/mL). Markers of endothelial dysfunction correlated with metabolic parameters, but did not correlate with arterial stiffness. Age and systolic blood pressure are major determinants of arterial stiffness in patients with T2D regardless of glycometabolic control, whereas an unfavorable metabolic profile is mainly related to endothelial dysfunction. These results suggest a differential contribution of cardiometabolic risk factors to vascular damage in T2D patients over their lifetime.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30202 - Endocrinology and metabolism (including diabetes, hormones)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Metabolites

  • ISSN

    2218-1989

  • e-ISSN

    2218-1989

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    10

  • Pages from-to

    382

  • UT code for WoS article

    000958515900001

  • EID of the result in the Scopus database

    2-s2.0-85152055878