All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tau isoforms imbalance impairs the axonal transport of the amyloid precursor protein in human neurons

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F17%3A00065828" target="_blank" >RIV/00159816:_____/17:00065828 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1523/JNEUROSCI.2305-16.2016" target="_blank" >http://dx.doi.org/10.1523/JNEUROSCI.2305-16.2016</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1523/JNEUROSCI.2305-16.2016" target="_blank" >10.1523/JNEUROSCI.2305-16.2016</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tau isoforms imbalance impairs the axonal transport of the amyloid precursor protein in human neurons

  • Original language description

    Tau, as a microtubule-associated protein, participates in key neuronal functions such as the regulation of microtubule dynamics, axonal transport and neurite outgrowth. Alternative splicing of exon 10 in the tau primary transcript gives rise to protein isoforms with three (3R) or four (4R) microtubule binding repeats. While tau isoforms are balanced in the normal adult human brain, imbalances in 3R:4R ratio have been tightly associated to the pathogenesis of several neurodegenerative disorders, yet the underlying molecular mechanisms remain elusive. Several studies exploiting tau overexpression and/or mutations suggested that perturbations in tau metabolism impair axonal transport. Nevertheless, no physiological model has yet demonstrated the consequences of altering the endogenous relative content of tau isoforms over axonal transport regulation. Here we addressed this question using a trans-splicing strategy that allows modulating tau exon 10 inclusion/exclusion in differentiated human-derived neurons. Upon changes in 3R:4R tau relative content neurons showed no morphological changes, but live imaging studies revealed that the dynamics of the amyloid precursor protein (APP) were significantly impaired. Single trajectories analyses of the moving vesicles showed that predominance of 3R tau favored the anterograde movement of APP-vesicles, increasing anterograde run lengths and reducing retrograde runs and segmental velocities. Contrarely, the imbalance towards the 4R isoform promoted a retrograde bias by a significant reduction of anterograde velocities. These findings suggest that changes in 3R:4R tau ratio has an impact on the regulation of axonal transport and specifically in APP dynamics, which might link tau isoforms imbalances with APP abnormal metabolism in neurodegenerative processes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30103 - Neurosciences (including psychophysiology)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Neuroscience

  • ISSN

    0270-6474

  • e-ISSN

  • Volume of the periodical

    37

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    58-69

  • UT code for WoS article

    000391143500006

  • EID of the result in the Scopus database