All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Extended Mechanism of the Plasminogen Activator Staphylokinase Revealed by Global Kinetic Analysis: 1000-fold Higher Catalytic Activity than That of Clinically Used Alteplase

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F22%3A00077641" target="_blank" >RIV/00159816:_____/22:00077641 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14310/22:00126168

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acscatal.1c05042" target="_blank" >https://pubs.acs.org/doi/10.1021/acscatal.1c05042</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acscatal.1c05042" target="_blank" >10.1021/acscatal.1c05042</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Extended Mechanism of the Plasminogen Activator Staphylokinase Revealed by Global Kinetic Analysis: 1000-fold Higher Catalytic Activity than That of Clinically Used Alteplase

  • Original language description

    The plasminogen activator staphylokinase is a fibrin-specific thrombolytic biomolecule and an attractive target for the development of effective myocardial infarction and stroke therapy. To engineer the protein rationally, a detailed understanding of the biochemical mechanism and limiting steps is essential. Conventional fitting to equations derived on the basis of simplifying approximations may be inaccurate for complex mechanisms such as that of staphylokinase. We employed a modern numerical approach of global kinetic data analysis whereby steady-state kinetics and binding affinity data sets were analyzed in parallel. Our approach provided an extended, revised understanding of the staphylokinase mechanism without simplifying approximations and determined the value of turnover number k(cat) of 117 s(-1) that was 10000-fold higher than that reported in the literature. The model further showed that the rate-limiting step of the catalytic cycle is binding of staphylokinase to plasmin molecules, which occurs via an induced-fit mechanism. The overall staphylokinase effectivity is further influenced by the formation of an inactive staphylokinase.plasminogen complex. Here, we describe a quick and simplified guide for obtaining reliable estimates of key parameters whose determination is critical to fully understand the staphylokinase catalytic functionality and define rational strategies for its engineering. Our study provides an interesting example of how a global numerical analysis of kinetic data can be used to better understand the mechanism and limiting factors of complex biochemical processes. The high catalytic activity of staphylokinase (more than 1000-fold higher than that of the clinically used drug alteplase) determined herein makes this thrombolytic agent a very attractive target for further engineering.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Catalysis

  • ISSN

    2155-5435

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    3807-3814

  • UT code for WoS article

    000784255800008

  • EID of the result in the Scopus database