All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Automated sleep classification with chronic neural implants in freely behaving canines

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F23%3A00079689" target="_blank" >RIV/00159816:_____/23:00079689 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21460/23:00367688 RIV/68407700:21730/23:00367688 RIV/00216305:26220/23:PU148846

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1741-2552/aced21" target="_blank" >https://iopscience.iop.org/article/10.1088/1741-2552/aced21</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1741-2552/aced21" target="_blank" >10.1088/1741-2552/aced21</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Automated sleep classification with chronic neural implants in freely behaving canines

  • Original language description

    Objective. Long-term intracranial electroencephalography (iEEG) in freely behaving animals provides valuable electrophysiological information and when correlated with animal behavior is useful for investigating brain function. Approach. Here we develop and validate an automated iEEG-based sleep-wake classifier for canines using expert sleep labels derived from simultaneous video, accelerometry, scalp electroencephalography (EEG) and iEEG monitoring. The video, scalp EEG, and accelerometry recordings were manually scored by a board-certified sleep expert into sleep-wake state categories: awake, rapid-eye-movement (REM) sleep, and three non-REM sleep categories (NREM1, 2, 3). The expert labels were used to train, validate, and test a fully automated iEEG sleep-wake classifier in freely behaving canines. Main results. The iEEG-based classifier achieved an overall classification accuracy of 0.878 &amp; PLUSMN; 0.055 and a Cohen&apos;s Kappa score of 0.786 &amp; PLUSMN; 0.090. Subsequently, we used the automated iEEG-based classifier to investigate sleep over multiple weeks in freely behaving canines. The results show that the dogs spend a significant amount of the day sleeping, but the characteristics of daytime nap sleep differ from night-time sleep in three key characteristics: during the day, there are fewer NREM sleep cycles (10.81 &amp; PLUSMN; 2.34 cycles per day vs. 22.39 &amp; PLUSMN; 3.88 cycles per night; p &lt; 0.001), shorter NREM cycle durations (13.83 &amp; PLUSMN; 8.50 min per day vs. 15.09 &amp; PLUSMN; 8.55 min per night; p &lt; 0.001), and dogs spend a greater proportion of sleep time in NREM sleep and less time in REM sleep compared to night-time sleep (NREM 0.88 &amp; PLUSMN; 0.09, REM 0.12 &amp; PLUSMN; 0.09 per day vs. NREM 0.80 &amp; PLUSMN; 0.08, REM 0.20 &amp; PLUSMN; 0.08 per night; p &lt; 0.001). Significance. These results support the feasibility and accuracy of automated iEEG sleep-wake classifiers for canine behavior investigations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20601 - Medical engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Neural Engineering

  • ISSN

    1741-2560

  • e-ISSN

    1741-2552

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    046025

  • UT code for WoS article

    001045228900001

  • EID of the result in the Scopus database