All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sub-kelvin temperature management in ion traps for optical clocks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00177016%3A_____%2F20%3AN0000005" target="_blank" >RIV/00177016:_____/20:N0000005 - isvavai.cz</a>

  • Result on the web

    <a href="https://aip.scitation.org/doi/10.1063/5.0024693" target="_blank" >https://aip.scitation.org/doi/10.1063/5.0024693</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sub-kelvin temperature management in ion traps for optical clocks

  • Original language description

    The uncertainty of the ac Stark shift due to thermal radiation represents a major contribution to the systematic uncertainty budget of stateof-the-art optical atomic clocks. In the case of optical clocks based on trapped ions, the thermal behavior of the rf-driven ion trap must be precisely known. This determination is even more difficult when scalable linear ion traps are used. Such traps enable a more advanced control of multiple ions and have become a platform for new applications in quantum metrology, simulation, and computation. Nevertheless, their complex structure makes it more difficult to precisely determine its temperature in operation and thus the related systematic uncertainty. We present here scalable linear ion traps for optical clocks, which exhibit very low temperature rise under operation. We use a finite-element model refined with experimental measurements to determine the thermal distribution in the ion trap and the temperature at the position of the ions. The trap temperature is investigated at different rf-drive frequencies and amplitudes with an infrared camera and integrated temperature sensors. We show that for typical trapping parameters for In+, Al+, Lu+, Ca+, Sr+, or Yb+ ions, the temperature rise at the position of the ions resulting from rf heating of the trap stays below 700 mK and can be controlled with an uncertainty on the order of a few 100 mK maximum. The corresponding uncertainty of the trap-related blackbody radiation shift is in the low 10−19 and even 10−20 regime for 171Yb+(E3) and 115In+, respectively.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Review of Scientific Instruments

  • ISSN

    0034-6748

  • e-ISSN

  • Volume of the periodical

    91

  • Issue of the periodical within the volume

    listopad

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    111301

  • UT code for WoS article

    000591855700001

  • EID of the result in the Scopus database

    2-s2.0-85096993369