All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Design and development of a portable tuneable radiation source from UV to IR for in situ calibration of radiometers measuring atmospheric aerosol properties

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00177016%3A_____%2F24%3AN0000056" target="_blank" >RIV/00177016:_____/24:N0000056 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1742-6596/2864/1/012016" target="_blank" >https://iopscience.iop.org/article/10.1088/1742-6596/2864/1/012016</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1742-6596/2864/1/012016" target="_blank" >10.1088/1742-6596/2864/1/012016</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Design and development of a portable tuneable radiation source from UV to IR for in situ calibration of radiometers measuring atmospheric aerosol properties

  • Original language description

    The detection of single photons plays an essential role in advancing single-photon science and technologies. Yet, within the visible/near-infrared spectral region, accurate fibre-based optical power measurements at the few-photon level are not yet well-established. In this study, we report on a fibre-based setup, enabling traceable optical power measurements at the few-photon level in this spectral region. The setup was used to calibrate the detection efficiency (DE) of four single-photon avalanche diode (SPAD) detectors. The relative standard uncertainties on the mean DE values obtained from repeat fibre-to-detector couplings ranged from 0.67% to 0.81% (k = 2). However, the relative standard deviation of DE values, which ranged from 1.38% to 3.20% (k = 2), poses a challenge for the metrology of these devices and applications that require high accuracy and repeatability. We investigated the source of these variations by spatially mapping the response of a detector's fibre connector port, using a focused free-space beam, allowing us to estimate the detector's spatial non-uniformity. In addition, we realise a novel calibration approach for fibre-coupled SPADs in a free-space configuration, enabling a direct comparison between the fibre-based setup and the National Physical Laboratory's established free-space facility using a single SPAD. Finally, we investigated alternative coupling methods, testing the repeatability of different fibre-to-fibre connectors in addition to direct fibre-to-detector couplings: SPADs from three manufacturers were tested, with both single-mode and multi-mode fibre.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10509 - Meteorology and atmospheric sciences

Result continuities

  • Project

    <a href="/en/project/8B20008" target="_blank" >8B20008: Metrology for aerosol optical properties</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physics: Conference Series

  • ISSN

    17426588

  • e-ISSN

  • Volume of the periodical

    2864

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    6

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85208610027