All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Chronic mucocutaneous candidiasis and connective tissue disorder in humans with impaired JNK1-dependent responses to IL-17A/F and TGF-β

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00209775%3A_____%2F19%3AN0000017" target="_blank" >RIV/00209775:_____/19:N0000017 - isvavai.cz</a>

  • Result on the web

    <a href="https://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=12&SID=D4FMBfejPANCj6jElVN&page=1&doc=1" target="_blank" >https://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=12&SID=D4FMBfejPANCj6jElVN&page=1&doc=1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1126/sciimmunol.aaz9320" target="_blank" >10.1126/sciimmunol.aaz9320</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Chronic mucocutaneous candidiasis and connective tissue disorder in humans with impaired JNK1-dependent responses to IL-17A/F and TGF-β

  • Original language description

    Genetic etiologies of chronic mucocutaneous candidiasis (CMC) disrupt human IL-17A/F-dependent immunity at mucosal surfaces, whereas those of connective tissue disorders (CTDs) often impair the TGF-β-dependent homeostasis of connective tissues. The signaling pathways involved are incompletely understood. We report a three-generation family with an autosomal dominant (AD) combination of CMC and a previously undescribed form of CTD that clinically overlaps with Ehlers-Danlos syndrome (EDS). The patients are heterozygous for a private splice-site variant of MAPK8, the gene encoding c-Jun N-terminal kinase 1 (JNK1), a component of the MAPK signaling pathway. This variant is loss-of-expression and loss-of-function in the patients' fibroblasts, which display AD JNK1 deficiency by haploinsufficiency. These cells have impaired, but not abolished, responses to IL-17A and IL-17F. Moreover, the development of the patients' TH17 cells was impaired ex vivo and in vitro, probably due to the involvement of JNK1 in the TGF-β-responsive pathway and further accounting for the patients' CMC. Consistently, the patients' fibroblasts displayed impaired JNK1- and c-Jun/ATF-2-dependent induction of key extracellular matrix (ECM) components and regulators, but not of EDS-causing gene products, in response to TGF-β. Furthermore, they displayed a transcriptional pattern in response to TGF-β different from that of fibroblasts from patients with Loeys-Dietz syndrome caused by mutations of TGFBR2 or SMAD3, further accounting for the patients' complex and unusual CTD phenotype. This experiment of nature indicates that the integrity of the human JNK1-dependent MAPK signaling pathway is essential for IL-17A- and IL-17F-dependent mucocutaneous immunity to Candida and for the TGF-β-dependent homeostasis of connective tissues.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30102 - Immunology

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Science Immunology

  • ISSN

    2470-9468

  • e-ISSN

  • Volume of the periodical

    4

  • Issue of the periodical within the volume

    41

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    1-13

  • UT code for WoS article

    000512348000014

  • EID of the result in the Scopus database

    2-s2.0-85075793025