All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Integral membrane proteins in proteomics. How to break open the black box?

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F17%3A10361858" target="_blank" >RIV/00216208:11110/17:10361858 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jprot.2016.08.006" target="_blank" >http://dx.doi.org/10.1016/j.jprot.2016.08.006</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jprot.2016.08.006" target="_blank" >10.1016/j.jprot.2016.08.006</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Integral membrane proteins in proteomics. How to break open the black box?

  • Original language description

    Integral membrane proteins (IMPs) are coded by 20-30% of human genes and execute important functions transmembrane transport, signal transduction, cell-cell communication, cell adhesion to the extracellular matrix, and many other processes. Due to their hydrophobicity, low expression and lack of trypsin cleavage sites in their transmembrane segments, IMPs have been generally under-represented in routine proteomic analyses. However, the field of membrane proteomics has changed markedly in the past decade, namely due to the introduction of filter assisted sample preparation (FASP), the establishment of cell surface capture (CSC) protocols, and the development of methods that enable analysis of the hydrophobic transmembrane segments. This review will summarize the recent developments in the field and outline the most successful strategies for the analysis of integral membrane proteins. Significance: Integral membrane proteins (IMPs) are attractive therapeutic targets mostly due to their many important functions. However, our knowledge of the membrane proteome is severely limited to effectively exploit their potential. This is mostly due to the lack of appropriate techniques or methods compatible with the typical features of IMPs, namely hydrophobicity, low expression and lack of trypsin cleavage sites. This review summarizes the most recent development in membrane proteomics and outlines the most successful strategies for their large-scale analysis.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10600 - Biological sciences

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Proteomics

  • ISSN

    1874-3919

  • e-ISSN

  • Volume of the periodical

    153

  • Issue of the periodical within the volume

    February

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    13

  • Pages from-to

    8-20

  • UT code for WoS article

    000393529100003

  • EID of the result in the Scopus database

    2-s2.0-84995911618