Supported lipid bilayers with encapsulated quantum dots (QDs) via liposome fusion: effect of QD size on bilayer formation and structure
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F18%3A10383537" target="_blank" >RIV/00216208:11110/18:10383537 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1039/c8nr05877f" target="_blank" >https://doi.org/10.1039/c8nr05877f</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c8nr05877f" target="_blank" >10.1039/c8nr05877f</a>
Alternative languages
Result language
angličtina
Original language name
Supported lipid bilayers with encapsulated quantum dots (QDs) via liposome fusion: effect of QD size on bilayer formation and structure
Original language description
Understanding interactions between functional nanoparticles and lipid bilayers is important to many emerging biomedical and bioanalytical applications. In this paper, we report incorporation of hydrophobic cadmium sulphide quantum dots (CdS QDs) into mixed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) liposomes, and into their supported bilayers (SLBs). The QDs were found embedded in the hydrophobic regions of the liposomes and the supported bilayers, which retained the QD fluorescent properties. In particular, we studied the effect of the QD size (2.7-5.4 nm in diameter) on the formation kinetics and structure of the supported POPC/POPE bilayers, monitored in situ using quartz crystal microbalance with dissipation monitoring (QCM-D), as the liposomes ruptured onto the substrate. The morphology of the obtained QD-lipid hybrid bilayers was studied using atomic force microscopy (AFM), and their structure by synchrotron X-ray reflectivity (XRR). It was shown that the incorporation of hydrophobic QDs promoted bilayer formation on the PEI cushion, evident from the rupture and fusion of the QD-endowed liposomes at a lower surface coverage compared to the liposomes without QDs. Furthermore, the degree of disruption in the supported bilayer structure caused by the QDs was found to be correlated with the QD size. Our results provide mechanistic insights into the kinetics of the rupturing and formation process of QD-endowed supported lipid bilayers via liposome fusion on polymer cushions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30106 - Anatomy and morphology (plant science to be 1.6)
Result continuities
Project
<a href="/en/project/GBP302%2F12%2FG157" target="_blank" >GBP302/12/G157: Dynamics and Organization of Chromosomes in the Cell Cycle and during Differentiation under Normal and Pathological Conditions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nanoscale
ISSN
2040-3364
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
37
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
17965-17974
UT code for WoS article
000450934400057
EID of the result in the Scopus database
2-s2.0-85054217499