All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Compton camera based on Timepix3 technology

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F18%3A10385588" target="_blank" >RIV/00216208:11110/18:10385588 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1088/1748-0221/13/11/C11022" target="_blank" >https://doi.org/10.1088/1748-0221/13/11/C11022</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1748-0221/13/11/C11022" target="_blank" >10.1088/1748-0221/13/11/C11022</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Compton camera based on Timepix3 technology

  • Original language description

    The Compton camera concept is based on the reconstruction of recorded Compton scattering events of incoming gamma rays. The scattering of primary gamma ray occurs in the first detector (called scattering detector - usually thin) recording the position and energy of the recoiled electron. The scattered gamma quantum continues towards the second detector (called absorption detector - usually thick) where it is absorbed. The second detector records the energy and the position of this scattered gamma. Using the Compton scattering equation it is possible to determine the scattering angle, and estimate possible directions of the original gamma ray as a surface of a cone. When the Compton camera records the number of such events, the location and the shape of the gamma source can be reconstructed. Timepix3, a hybrid single photon counting imaging pixel detector, is a perfect device for creation of a compact Compton camera. Timepix3 is an event based readout chip (every hit pixel is immediately sent to a readout) and can record the time-of-arrival (ToA) and energy of an incident gamma simultaneously in each pixel. The chip offers high energy resolution (1 keV at 60 keV, 7 keV at 356 keV), as well as time resolution (1.6 ns). The Timepix3 readout chip can be combined with different sensor materials (Si, CdTe, CZT). In this contribution, we present a very compact detector system for imaging with gamma-rays using the Compton camera principle. The system consists of at least two layers of hybrid pixel detectors Timepix3 with the sensors being optimized for gamma-ray tracking. The front detector layer (scattering) is made of silicon of 1 mm thickness, while the last layer (absorbing) is equipped with thick CdTe or CZT sensors up to 2 mm in thickness. The total absorption of the whole detector can be very high if several CdTe or CZT layers are used. The maximal number of layers is not limited, but the practical evaluation was performed with 2 layers. Thanks to Timepix3 simultaneous measurement of ToA and energy, it is possible to precisely detect coincidence events in the detector layers. Based on the energy and position of these events, it is possible to estimate the possible direction of the original gamma. The angular resolution of the presented Compton camera depends on the detected energy, and it is in the order of 1 degree.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30224 - Radiology, nuclear medicine and medical imaging

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Instrumentation

  • ISSN

    1748-0221

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    November

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

  • UT code for WoS article

    000452066900001

  • EID of the result in the Scopus database

    2-s2.0-85057595419