Kinematic Evaluation of the GMK Sphere Implant During Gait Activities: A Dynamic Videofluoroscopy Study
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F19%3A10410328" target="_blank" >RIV/00216208:11110/19:10410328 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uvSXoSEhxv" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uvSXoSEhxv</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jor.24416" target="_blank" >10.1002/jor.24416</a>
Alternative languages
Result language
angličtina
Original language name
Kinematic Evaluation of the GMK Sphere Implant During Gait Activities: A Dynamic Videofluoroscopy Study
Original language description
Joint stability is a primary concern in total knee joint replacement. The GMK Sphere prosthesis was specifically designed to provide medial compartment anterior-posterior (A-P) stability, while permitting rotational freedom of the joint through a flat lateral tibial surface. The objective of this study was to establish the changes in joint kinematics introduced by the GMK Sphere prosthesis during gait activities in comparison to conventional posterior-stabilized (PS) fixed-bearing and ultra-congruent (UC) mobile-bearing geometries. The A-P translation and internal/external rotation of three cohorts, each with 10 good outcome subjects (2.9 +/- 1.6 years postop), with a GMK Sphere, GMK PS or GMK UC implant were analysed throughout complete cycles of gait activities using dynamic videofluoroscopy. The GMK Sphere showed the smallest range of medial compartment A-P translation for level walking, downhill walking, and stair descent (3.6 +/- 0.9 mm, 3.1 +/- 0.8 mm, 3.9 +/- 1.3 mm), followed by the GMK UC (5.7 +/- 1.0 mm, 8.0 +/- 1.7 mm, 8.7 +/- 1.9 mm) and the GMK PS (10.3 +/- 2.2 mm, 10.1 +/- 2.6 mm, 11.6 +/- 1.6 mm) geometries. The GMK Sphere exhibited the largest range of lateral compartment A-P translation (12.1 +/- 2.2 mm), and the largest range of tibial internal/external rotation (13.2 +/- 2.2 degrees), both during stair descent. This study has shown that the GMK Sphere clearly restricts A-P motion of the medial condyle during gait activities while still allowing a large range of axial rotation. The additional comparison against the conventional GMK PS and UC geometries, not only demonstrates that implant geometry is a key factor in governing tibio-femoral kinematics, but also that the geometry itself probably plays a more dominant role for joint movement than the type of gait activity. (c) 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30211 - Orthopaedics
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Orthopaedic Research
ISSN
0736-0266
e-ISSN
—
Volume of the periodical
37
Issue of the periodical within the volume
11
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
2337-2347
UT code for WoS article
000480179600001
EID of the result in the Scopus database
2-s2.0-85070769043