All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Altered Erythro-Myeloid Progenitor Cells Are Highly Expanded in Intensively Regenerating Hematopoiesis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F20%3A10411554" target="_blank" >RIV/00216208:11110/20:10411554 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BLYSwvz25O" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BLYSwvz25O</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3389/fcell.2020.00098" target="_blank" >10.3389/fcell.2020.00098</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Altered Erythro-Myeloid Progenitor Cells Are Highly Expanded in Intensively Regenerating Hematopoiesis

  • Original language description

    Regeneration of severely damaged adult tissues is currently only partially understood. Hematopoietic tissue provides a unique opportunity to study tissue regeneration due to its well established steady-state structure and function, easy accessibility, well established research methods, and the well-defined embryonic, fetal, and adult stages of development. Embryonic/fetal liver hematopoiesis and adult hematopoiesis recovering from damage share the need to expand populations of progenitors and stem cells in parallel with increasing production of mature blood cells. In the present study, we analyzed adult hematopoiesis in mice subjected to a submyeloablative dose (6 Gy) of gamma radiation and targeted the period of regeneration characterized by massive production of mature blood cells along with ongoing expansion of immature hematopoietic cells. We uncovered significantly expanded populations of developmentally advanced erythroid and myeloid progenitors with significantly altered immunophenotype. Their population expansion does not require erythropoietin stimulation but requires the SCF/c-Kit receptor signaling. Regenerating hematopoiesis significantly differs from the expanding hematopoiesis in the fetal liver but we find some similarities between the regenerating hematopoiesis and the early embryonic definitive hematopoiesis. These are in (1) the concomitant population expansion of myeloid progenitors and increasing production of myeloid blood cells (2) performing these tasks despite the severely reduced transplantation capacity of the hematopoietic tissues, and (3) the expression of CD16/32 in most progenitors. Our data thus provide a novel insight into tissue regeneration by suggesting that cells other than stem cells and multipotent progenitors can be of fundamental importance for the rapid recovery of tissue function.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30105 - Physiology (including cytology)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Frontiers in Cell and Developmental Biology

  • ISSN

    2296-634X

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    February

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    19

  • Pages from-to

    98

  • UT code for WoS article

    000525102200001

  • EID of the result in the Scopus database

    2-s2.0-85082676795