Diffuse reflectance spectroscopy in dental caries detection and classification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F20%3A10411843" target="_blank" >RIV/00216208:11110/20:10411843 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21730/20:00347294 RIV/00179906:_____/20:10411843 RIV/00216208:11150/20:10411843 RIV/60461373:22340/20:43920945
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MxP6h0glZQ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MxP6h0glZQ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11760-020-01640-4" target="_blank" >10.1007/s11760-020-01640-4</a>
Alternative languages
Result language
angličtina
Original language name
Diffuse reflectance spectroscopy in dental caries detection and classification
Original language description
Machine learning and augmented reality form very important computational tools in biomedicine, neurology and stomatology as well. The present paper is devoted to a novel method of spectroscopic detection of caries lesions that changes the optical properties of the affected tissue. This method of the diffuse reflectance spectroscopy is used in many biomedical areas even though the analysis of associated data suffers from a large variance of acquired signals' shape and their properties. The proposed methodology of measured spectra analysis is based upon general methods of signal feature evaluation and the use of computational intelligence for their classification. The paper compares properties of dental feature clusters for the set of 578 tissues with different levels of their changes. Classification results of selected features by the support vector machine, Bayesian method, k-nearest neighbour method and neural network enable to distinguish the healthy tissue and caries lesions with the accuracy from 94.1 to 98.4% and the cross-validation error lower than 8.3%. These results suggest how the augmented reality and general mathematical signal processing methods can be beneficial for diagnostic purposes in dental research and possibly in the clinical practice as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30208 - Dentistry, oral surgery and medicine
Result continuities
Project
<a href="/en/project/EF17_048%2F0007441" target="_blank" >EF17_048/0007441: PERSONMED - Center for the Development of Personalized Medicine in Age-Related Diseases</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Signal, Image and Video Processing
ISSN
1863-1703
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
8
Pages from-to
1063-1070
UT code for WoS article
000510294800001
EID of the result in the Scopus database
2-s2.0-85078830904