Highly colloidally stable trimodal I-125-radiolabeled PEG-neridronate-coated upconversion/magnetic bioimaging nanoprobes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F20%3A10419202" target="_blank" >RIV/00216208:11110/20:10419202 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mBRWDG7rMR" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mBRWDG7rMR</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-020-77112-z" target="_blank" >10.1038/s41598-020-77112-z</a>
Alternative languages
Result language
angličtina
Original language name
Highly colloidally stable trimodal I-125-radiolabeled PEG-neridronate-coated upconversion/magnetic bioimaging nanoprobes
Original language description
"All-in-one" multifunctional nanomaterials, which can be visualized simultaneously by several imaging techniques, are required for the efficient diagnosis and treatment of many serious diseases. This report addresses the design and synthesis of upconversion magnetic NaGdF4:Yb3+/Er3+(Tm3+) nanoparticles by an oleic acid-stabilized high-temperature coprecipitation of lanthanide precursors in octadec-1-ene. The nanoparticles, which emit visible or UV light under near-infrared (NIR) irradiation, were modified by in-house synthesized PEG-neridronate to facilitate their dispersibility and colloidal stability in water and bioanalytically relevant phosphate buffered saline (PBS). The cytotoxicity of the nanoparticles was determined using HeLa cells and human fibroblasts (HF). Subsequently, the particles were modified by Bolton-Hunter-neridronate and radiolabeled by I-125 to monitor their biodistribution in mice using single-photon emission computed tomography (SPECT). The upconversion and the paramagnetic properties of the NaGdF4:Yb3+/Er3+(Tm3+)@PEG nanoparticles were evaluated by photoluminescence, magnetic resonance (MR) relaxometry, and magnetic resonance imaging (MRI) with 1 T and 4.7 T preclinical scanners. MRI data were obtained on phantoms with different particle concentrations and during pilot long-time in vivo observations of a mouse model. The biological and physicochemical properties of the NaGdF4:Yb3+/Er3+(Tm3+)@PEG nanoparticles make them promising as a trimodal optical/MRI/SPECT bioimaging and theranostic nanoprobe for experimental medicine.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30224 - Radiology, nuclear medicine and medical imaging
Result continuities
Project
<a href="/en/project/GA18-07983S" target="_blank" >GA18-07983S: Noninvasive visualization of transplanted cell distribution and viability</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Scientific Reports
ISSN
2045-2322
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
20016
UT code for WoS article
000595719100001
EID of the result in the Scopus database
2-s2.0-85096206151